Measure Estimates of Nodal Sets of Polyharmonic Functions

被引:0
作者
Long TIAN
机构
[1] DepartmentofAppliedMathematics,NanjingUniversityofScienceandTechnology
关键词
Polyharmonic function; Nodal set; Frequency; Measure estimate; Growth property;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
This paper deals with the function u which satisfies△ku = 0, where k≥2 is an integer. Such a function u is called a polyharmonic function. The author gives an upper bound of the measure of the nodal set of u, and shows some growth property of u.
引用
收藏
页码:917 / 932
页数:16
相关论文
共 6 条
[1]  
The growth of H-harmonic functions on the Heisenberg group[J]. LIU HaiRong,TIAN Long,YANG XiaoPing. Science China(Mathematics). 2014(04)
[2]   Measure estimates of nodal sets of bi-harmonic functions [J].
Tian, Long ;
Yang, Xiao-Ping .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (02) :558-576
[3]  
Singular Sets of Higher Order Elliptic Equations[J] . Qing Han,Robert Hardt,Fanghua Lin. Communications in Partial Differential Equations . 2003 (11-1)
[4]   Schauder estimates for elliptic operators with applications to nodal sets [J].
Qing Han .
The Journal of Geometric Analysis, 2000, 10 (3) :455-480
[5]  
Nodal sets of eigenfunctions on Reimannian manifolds[J] . Harold Donnelly,Charles Fefferman. Inventiones Mathematicae . 1988 (1)
[6]  
Monotonicity Properties of Variational Integrals, ApWeights and Unique Continuation[J] . Indiana University Mathematics Journal . 1986 (2)