Measuring Quantum Geometric Tensor of Non-Abelian System in Superconducting Circuits

被引:0
|
作者
郑文 [1 ]
徐建文 [1 ]
马壮 [1 ]
李勇 [1 ]
董煜倩 [1 ]
张煜 [1 ]
王晓晗 [1 ]
孙国柱 [2 ]
吴培亨 [2 ]
赵杰 [1 ]
李邵雄 [1 ]
兰栋 [1 ]
谭新生 [1 ]
于扬 [1 ]
机构
[1] National Laboratory of Solid State Microstructures,School of Physics,Nanjing University
[2] School of Electronic Science and Engineering,Nanjing University
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Topology played an important role in physics research during the last few decades. In particular, the quantum geometric tensor that provides local information about topological properties has attracted much attention. It will reveal interesting topological properties but have not been measured in non-Abelian systems. Here, we use a four-qubit quantum system in superconducting circuits to construct a degenerate Hamiltonian with parametric modulation. By manipulating the Hamiltonian with periodic drivings, we simulate the Bernevig–Hughes–Zhang model and obtain the quantum geometric tensor from interference oscillation. In addition, we reveal its topological feature by extracting the topological invariant, demonstrating an effective protocol for quantum simulation of a non-Abelian system.
引用
收藏
页码:12 / 28
页数:17
相关论文
共 50 条
  • [1] Measuring Quantum Geometric Tensor of Non-Abelian System in Superconducting Circuits
    Zheng, Wen
    Xu, Jianwen
    Ma, Zhuang
    Li, Yong
    Dong, Yuqian
    Zhang, Yu
    Wang, Xiaohan
    Sun, Guozhu
    Wu, Peiheng
    Zhao, Jie
    Li, Shaoxiong
    Lan, Dong
    Tan, Xinsheng
    Yu, Yang
    CHINESE PHYSICS LETTERS, 2022, 39 (10)
  • [2] Abelian and non-Abelian quantum geometric tensor
    Ma, Yu-Quan
    Chen, Shu
    Fan, Heng
    Liu, Wu-Ming
    PHYSICAL REVIEW B, 2010, 81 (24)
  • [3] Phase space formulation of the Abelian and non-Abelian quantum geometric tensor
    Gonzalez, Diego
    Gutierrez-Ruiz, Daniel
    David Vergara, J.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (50)
  • [4] Non-Abelian quantum geometric tensor in degenerate topological semimetals
    Ding, Hai -Tao
    Zhang, Chang-Xiao
    Liu, Jing-Xin
    Wang, Jian-Te
    Zhang, Dan -Wei
    Zhu, Shi-Liang
    PHYSICAL REVIEW A, 2024, 109 (04)
  • [5] Non-Abelian geometric phases in a system of coupled quantum bits
    Mousolou, Vahid Azimi
    Sjoqvist, Erik
    PHYSICAL REVIEW A, 2014, 89 (02):
  • [6] Detecting non-Abelian geometric phases with superconducting nanocircuits
    Feng, Zhi-Bo
    Zhang, Yuan-Min
    Wang, Guo-Zhi
    Han, Hongpei
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2009, 41 (10): : 1859 - 1863
  • [7] Non-Abelian geometric phases carried by the spin fluctuation tensor
    Bharath, H. M.
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (06)
  • [8] Non-Abelian geometric quantum memory with an atomic ensemble
    Li, Y
    Zhang, P
    Zanardi, P
    Sun, CP
    PHYSICAL REVIEW A, 2004, 70 (03): : 032330 - 1
  • [9] Abelian and non-Abelian geometric phases in adiabatic open quantum systems
    Sarandy, M. S.
    Lidar, D. A.
    PHYSICAL REVIEW A, 2006, 73 (06):
  • [10] NON-ABELIAN GEOMETRIC EFFECT IN QUANTUM ADIABATIC TRANSITIONS
    JOYE, A
    PFISTER, CE
    PHYSICAL REVIEW A, 1993, 48 (04): : 2598 - 2608