Insightsintomeasurementsofwater-solubleionsinPM2.5andtheirgaseousprecursorsinBeijing

被引:11
作者
Jie Su [1 ]
Pusheng Zhao [1 ]
Jing Ding [2 ]
Xiang Du [2 ]
Youjun Dou [1 ]
机构
[1] Institute of Urban Meteorology,China Meteorological Administration
[2] State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control,College of Environmental Science and Engineering,Nankai University
关键词
D O I
暂无
中图分类号
X513 [粒状污染物];
学科分类号
0706 ; 070602 ;
摘要
To better understand the characteristics and transformation mechanisms of secondary inorganic aerosols,hourly mass concentrations of water-soluble inorganic ions(WSIIs) in PM2.5 and their gaseous precursors were measured online from 2016 to 2018 at an urban site in Beijing.Seasonal and diurnal variations in water-soluble ions and gaseous precursors were discussed and their gas-particle conversion and partitioning were also examined,some related parameters were characterized.The(TNH3) Rich was also defined to describe the variations of the excess NH3 in different seasons.In addition,a sensitivity test was carried out by using ISORROPIA II to outline the driving factors of gas-particle partitioning.In Beijing,the relative contribution of nitrate to PM2.5 has increased markedly in recent years,especially under polluted conditions.In the four seasons,only a small portion of NO2 in the atmosphere was converted into total nitrate(TNO3),and more than 80% of TNO3 occurred in the form of nitrate due to the abundant ammonia.The concentration of total ammonia(TNH3) was much higher than that required to neutralize acid gases,and most of the TNH3 occurred as gaseous NH3.The nitrous acid(HONO) concentration was highly correlated with NH3 concentration and had increased significantly in Beijing compared with previous studies.The total chloride(TCl) was the highest in winter,and ε(Cl-) was more sensitive to variations in the ambient temperature(T) and relative humidity(RH) than ε(NO3-).
引用
收藏
页码:123 / 137
页数:15
相关论文
empty
未找到相关数据