Highly Stable Silicon–Carbon–Nitrogen Composite Anodes from Silsesquiazane for Rechargeable Lithium-Ion Battery

被引:1
|
作者
Yong Seok Kim [1 ]
Yong L.Joo [1 ]
Young-Je Kwark [2 ]
机构
[1] School of Chemical & Biomolecular Engineering, Cornell University
[2] Department of Organic Materials and Fiber Engineering, Soongsil University
关键词
Polymer-derived ceramics; Silsesquiazane; Lithium ion battery; Lithium ion conductivity;
D O I
暂无
中图分类号
TB33 [复合材料]; TM912 [蓄电池];
学科分类号
0805 ; 080502 ; 0808 ;
摘要
Herein, we developed novel silicon–carbon–nitrogen(SiCN) composites synthesized by pyrolyzing silsesquiazane polymer as an anode material for rechargeable lithium-ion batteries. Among variable pyrolysis temperatures of 700 ℃, 1000 ℃ and 1300 ℃, the SiCN composites prepared at 1000 ℃ showed the highest capacity with outstanding battery cycle life by cyclic voltammetry and electrochemical impedance spectroscopy. Such good battery and electrochemical performances should be attributed to a proper ratio of carbon and nitrogen or oxygen in the SiCN composites. Furthermore, our SiCN electrode possessed better lithium ion conductivity than pure silicon nanoparticles. This work demonstrates that polymer-derived composites are among the promising strategies to achieve highly stable silicon anodes for rechargeable batteries.
引用
收藏
页码:195 / 199
页数:5
相关论文
共 50 条
  • [41] Investigation of Porous Silicon/Carbon Composite as Anodes for Lithium Ion Batteries
    Huang Yan-Hua
    Han Xiang
    Chen Hui-Xin
    Chen Song-Yan
    Yang Yong
    JOURNAL OF INORGANIC MATERIALS, 2015, 30 (04) : 351 - 356
  • [42] Strategies for rechargeable lithium-ion battery management system
    Wang Yong
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON APPLIED SCIENCE AND ENGINEERING INNOVATION, 2015, 12 : 1525 - 1528
  • [43] Carbon-fiber-silicon-nanocomposites for lithium-ion battery anodes by microwave plasma chemical vapor deposition
    Wolf, H.
    Pajkic, Z.
    Gerdes, T.
    Willert-Porada, M.
    JOURNAL OF POWER SOURCES, 2009, 190 (01) : 157 - 161
  • [44] Recent advances in interface engineering of silicon anodes for enhanced lithium-ion battery performance
    Wang, Liang
    Yu, Jie
    Li, Shaoyuan
    Xi, Fengshuo
    Ma, Wenhui
    Wei, Kuixian
    Lu, Jijun
    Tong, Zhongqiu
    Liu, Bao
    Luo, Bin
    ENERGY STORAGE MATERIALS, 2024, 66
  • [45] γ-Graphyne nanotubes as promising lithium-ion battery anodes
    Ma, Jiapeng
    Yuan, Yuan
    Wu, Si
    Lee, Jin Yong
    Kang, Baotao
    APPLIED SURFACE SCIENCE, 2020, 531
  • [46] Recycling silicon scrap for spherical Si-C composite as high-performance lithium-ion battery anodes
    Sreenarayanan, Bhagath
    Vicencio, Marta
    Bai, Shuang
    Lu, Bingyu
    Mao, Ou
    Adireddy, Shiva
    Bao, Wurigumula
    Meng, Ying Shirley
    JOURNAL OF POWER SOURCES, 2023, 578
  • [47] Silicon/Carbon Composite Anode Materials for Lithium-Ion Batteries
    Dou, Fei
    Shi, Liyi
    Chen, Guorong
    Zhang, Dengsong
    ELECTROCHEMICAL ENERGY REVIEWS, 2019, 2 (01) : 149 - 198
  • [48] Preparation and properties of porous silicon anode coated with nitrogen-doped carbon for lithium-ion battery
    Xiao, Zhongliang
    Xia, Yubo
    Wang, Cheng
    Zhao, Tingting
    Yan, Qunxuan
    Xiao, Minzhi
    Peng, Xiaoxin
    Song, Liubin
    IONICS, 2024, 30 (06) : 22 - 22
  • [49] Silicon/Carbon Composite Anode Materials for Lithium-Ion Batteries
    Fei Dou
    Liyi Shi
    Guorong Chen
    Dengsong Zhang
    Electrochemical Energy Reviews, 2019, 2 : 149 - 198
  • [50] Nitrogen-doped cotton stalk porous carbon composite as anode material for Lithium-ion battery
    Wang, Yang
    Chang, Hanyu
    Dong, Zhenfei
    Zhou, Yi
    Cao, Linlin
    Deng, Hui
    Tan, Tianle
    Ren, Pengkun
    MATERIALS LETTERS, 2022, 322