Pandanus amaryllifoliusleaf extract improves insulin sensitivity in high-fat diet-induced obese mice

被引:0
|
作者
Suphaket SAENTAWEESUK [1 ]
Jarinyaporn NAOWABOOT [1 ]
Nuntiya SOMPARN [1 ]
机构
[1] Department of Preclinical Science,Faculty of Medicine,Thammasat University
关键词
Pandanus amaryllifolius; insulin resistance; obesity; GLUT4;
D O I
暂无
中图分类号
R285.5 [中药实验药理];
学科分类号
1008 ;
摘要
OBJECTIVE To investigate the effect of Pandanus amaryllifolius leaf in high-fat diet-induced insulin resistance in mice model.METHODS To induce obesity,male ICR mice were fed with a high-fat diet(45%fat)for six weeks.The mice were divided into four groups(n=8):non-obese control mice were treated with 5% gum arabic and obese mice were treated with Pandanus amaryllifolius(125and 250mg·kg-1·d-1),or 5% gum arabic.After six weeks of treatments,the fasting blood glucose,serum insulin,OGTT and fat cell protein expression of glucose transporter 4(GLUT4)were determined.RESULTS Administration of Pandanus amaryllifolius showed significantly(P<0.05)reduced the high blood glucose,inhibited the abnormal increase in blood glucose level during OGTT,and decreased the high level of serum insulin.Moreover,it is interesting that the protein expression of GLUT4 was effectively increased by Pandanus amaryllifolius.CONCLUSION These findings demonstrate that the extract from Pandanus amaryllifolius leaf possesses antihyperglycemic action in obese mice by improving insulin sensitivity and stimulating GLUT4 expression in adipose tissue.
引用
收藏
页码:70 / 70
页数:1
相关论文
共 50 条
  • [31] Diet Change Improves Obesity and Lipid Deposition in High-Fat Diet-Induced Mice
    Ji, Tengteng
    Fang, Bing
    Wu, Fang
    Liu, Yaqiong
    Cheng, Le
    Li, Yixuan
    Wang, Ran
    Zhu, Longjiao
    NUTRIENTS, 2023, 15 (23)
  • [32] Vimentin Deficiency Prevents High-Fat Diet-Induced Obesity and Insulin Resistance in Mice
    Kim, SeoYeon
    Kim, Inyeong
    Cho, Wonkyoung
    Oh, Goo Taeg
    Park, Young Mi
    DIABETES & METABOLISM JOURNAL, 2021, 45 (01) : 97 - +
  • [33] Sicyos angulatus Prevents High-Fat Diet-Induced Obesity and Insulin Resistance in Mice
    Choi, Ji Hyun
    Noh, Jung-Ran
    Kim, Yong-Hoon
    Kim, Jae-Hoon
    Kang, Eun-Jung
    Choi, Dong-Hee
    Choi, Jung Hyeon
    An, Jin-Pyo
    Oh, Won-Keun
    Lee, Chul-Ho
    INTERNATIONAL JOURNAL OF MEDICAL SCIENCES, 2020, 17 (06): : 787 - 798
  • [34] Dehydrozingerone inhibits renal lipotoxicity in high-fat diet-induced obese mice
    Lee, Eun Soo
    Kang, Jeong Suk
    Kim, Hong Min
    Kim, Su Jin
    Kim, Nami
    Lee, Jung Ok
    Kim, Hyeon Soo
    Lee, Eun Young
    Chung, Choon Hee
    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2021, 25 (18) : 8725 - 8733
  • [35] Structural and functional changes in the kidneys of high-fat diet-induced obese mice
    Deji, Naoko
    Kume, Shinji
    Araki, Shin-ichi
    Soumura, Mariko
    Sugimoto, Toshiro
    Isshiki, Keiji
    Chin-Kanasaki, Masami
    Sakaguchi, Masayoshi
    Koya, Daisuke
    Haneda, Masakazu
    Kashiwagi, Atsunori
    Uzu, Takashi
    AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 2009, 296 (01) : F118 - F126
  • [36] Exercise training improves intramuscular triglyceride lipolysis sensitivity in high-fat diet induced obese mice
    Kangeun Ko
    Jinhee Woo
    Ju Yong Bae
    Hee Tae Roh
    Yul Hyo Lee
    Ki Ok Shin
    Lipids in Health and Disease, 17
  • [37] Mentha canadensis attenuates adiposity and hepatic steatosis in high-fat diet-induced obese mice
    Han, Youngji
    Choi, Ji-Young
    Kwon, Eun-Young
    NUTRITION RESEARCH AND PRACTICE, 2023, 17 (05) : 870 - 882
  • [38] Chrysobalanus icaco L. Leaves Normalizes Insulin Sensitivity and Blood Glucose and Inhibits Weight Gain in High-Fat Diet-Induced Obese Mice
    White, Pollyanna A. S.
    Araujo, Jessica M. D.
    Cercato, Luana M.
    Souza, Lucas A.
    Oliveira Barbosa, Ana Paula
    Quintans-Junior, Lucindo Jose
    Machado, Ubiratan F.
    Camargo, Enilton A.
    Brito, Luciana C.
    Santos, Marcio Roberto V.
    JOURNAL OF MEDICINAL FOOD, 2016, 19 (02) : 155 - 160
  • [39] Effects of Brassica oleracea extract on impaired glucose and lipid homeostasis in high-fat diet-induced obese mice
    Nanna, Urarat
    Naowaboot, Jarinyaporn
    Chularojmontri, Linda
    Tingpej, Pholawat
    Wattanapitayakul, Suvara
    ASIAN PACIFIC JOURNAL OF TROPICAL BIOMEDICINE, 2019, 9 (02) : 80 - 84
  • [40] Zeolite Improves High-Fat Diet-Induced Hyperglycemia, Hyperlipidemia and Obesity in Mice
    Kubo, Kazuhiro
    Kawai, Yasuyuki
    JOURNAL OF NUTRITIONAL SCIENCE AND VITAMINOLOGY, 2021, 67 (05) : 283 - 291