Controllable Silver Plating on Silica for Surface-enhanced Raman Scattering

被引:0
|
作者
OZAKI Yukihiro [1 ]
机构
[1] Department of Chemistry and Research Center for Single Molecule Spectroscopy,School of Science and Technology,Kwansei Gakuin University
基金
中国国家自然科学基金;
关键词
SiO2; nanoparticle; Au seed; Ag nanoparticle; Surface-enhanced Raman scattering(SERS);
D O I
暂无
中图分类号
O611.3 [性质];
学科分类号
070301 ; 081704 ;
摘要
We proposed a facile and rapid method for preparing silica-silver core-shell(SSCS) substrates to use Ag electroless plating on SiO2@Au-seed particles.UV-Vis-NIR absorption spectrometer and SEM were employed to monitor the reaction process of the formation of Ag on the surfaces of silica beads,and the optical resonance of the substrate could shift from visible to NIR region.It has been found that surface-enhanced Raman scattering(SERS) enhancement changes with the electroless plating time and the SSCS substrate with the plating time of 90 s(90SSCS) shows the strongest SERS response under the laser excitation at 514.5 nm.Signals collected over multiple spots and substrate of rhodamine 6G(R6G) resulted in a relative standard deviation(RSD) of 9.75%.The calculated enhancement factor(EF) was approximately 105 "106.SSCS substrate exhibits high SERS performance,which is due to electromagnetic SERS enhancement with additional localization field within closely packed Ag nanoparticles decorated on the SiO2 nanoparticles.And this substrate presents tunable and broad localized surface plasmon resonance(LSPR),so this method may open a new way for SERS studies with other laser excitation.
引用
收藏
页码:683 / 687
页数:5
相关论文
共 50 条
  • [1] Controllable Silver Plating on Silica for Surface-enhanced Raman Scattering
    Chen Lei
    Han Xiao-xia
    Yang Jing-xiu
    Zhou Ji
    Lu Zhi-cheng
    Song Wei
    Zhao Bing
    Xu Wei-qing
    Ozaki, Yukihiro
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2011, 27 (04) : 683 - 687
  • [2] Synthesis of Silver Nanoparticles with Controllable Surface Charge and Their Application to Surface-Enhanced Raman Scattering
    Alvarez-Puebla, Ramon A.
    Aroca, Ricardo F.
    ANALYTICAL CHEMISTRY, 2009, 81 (06) : 2280 - 2285
  • [3] Controllable aggregates of silver nanoparticle induced by methanol for surface-enhanced Raman scattering
    Zhang, Zhiliang
    Wen, Yongqiang
    APPLIED PHYSICS LETTERS, 2012, 101 (17)
  • [4] Controllable Synthesis of Silver Nanoparticle Aggregates for Surface-Enhanced Raman Scattering Studies
    Sun, Lanlan
    Zhao, Dongxu
    Ding, Meng
    Xu, ZhiKun
    Zhang, Zhenzhong
    Li, Binghui
    Shen, Dezhen
    JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (33): : 16295 - 16304
  • [5] A silver solution for surface-enhanced Raman scattering
    Li, YS
    Cheng, JC
    Coons, LB
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 1999, 55 (06) : 1197 - 1207
  • [6] Improved Surface-Enhanced Raman Scattering Performances on Silver-Silica Nanocomposites
    Liu, Yu-Chuan
    Yang, Kuang-Hsuan
    Hsu, Ting-Chu
    JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (19): : 8162 - 8168
  • [7] Surface-enhanced Raman scattering from silica core particles covered with silver nanoparticles
    Simovski, Constantin R.
    PHYSICAL REVIEW B, 2009, 79 (21)
  • [8] Silver Nanovoid Arrays for Surface-Enhanced Raman Scattering
    Lang, Xianzhong
    Qiu, Teng
    Yin, Yin
    Kong, Fan
    Si, Lifang
    Hao, Qi
    Chu, Paul K.
    LANGMUIR, 2012, 28 (23) : 8799 - 8803
  • [9] Novel silver nanostructures for surface-enhanced Raman scattering
    Xia, Younan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [10] Surface-enhanced Raman scattering of invertase on silver nanoparticles
    Corp, Kathryn L.
    Gilbert, Brian D.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243