Denoising of chaotic signal using independent component analysis and empirical mode decomposition with circulate translating

被引:0
作者
王文波 [1 ,2 ]
张晓东 [2 ]
常毓禅 [3 ]
汪祥莉 [4 ]
王钊 [5 ]
陈希 [5 ]
郑雷 [6 ]
机构
[1] College of Science Wuhan University of Science and Technology
[2] State Key Laboratory of Satellite Ocean Environment Dynamics Second Institute of Oceanography State Oceanic Administration
[3] School of Finance Renmin University of China
[4] School of Computer Science and Technology Wuhan University of Technology
[5] College of Information Science and Engineering Wuhan University of Science and Technology
[6] Wuhan NARI Limited Liability Company of Sate Grid Electric Power Research Institute
关键词
independent component analysis; empirical mode decomposition; chaotic signal; denoising;
D O I
暂无
中图分类号
TN911.4 [噪声与干扰];
学科分类号
081002 ;
摘要
In this paper, a new method to reduce noises within chaotic signals based on ICA(independent component analysis)and EMD(empirical mode decomposition) is proposed. The basic idea is decomposing chaotic signals and constructing multidimensional input vectors, firstly, on the base of EMD and its translation invariance. Secondly, it makes the independent component analysis on the input vectors, which means that a self adapting denoising is carried out for the intrinsic mode functions(IMFs) of chaotic signals. Finally, all IMFs compose the new denoised chaotic signal. Experiments on the Lorenz chaotic signal composed of different Gaussian noises and the monthly observed chaotic sequence on sunspots were put into practice. The results proved that the method proposed in this paper is effective in denoising of chaotic signals.Moreover, it can correct the center point in the phase space effectively, which makes it approach the real track of the chaotic attractor.
引用
收藏
页码:404 / 410
页数:7
相关论文
共 10 条
[1]   基于EMD方差特性的混沌信号自适应去噪算法 [J].
张强 ;
行鸿彦 .
电子学报, 2015, 43 (05) :901-906
[2]   基于核独立成分分析的极化SAR图像相干斑抑制 [J].
张中山 ;
余洁 ;
燕琴 ;
孟云闪 ;
赵争 .
测绘学报 , 2011, (03) :289-295
[3]   地震信号去噪的最优小波基选取方法 [J].
张华 ;
陈小宏 ;
杨海燕 .
石油地球物理勘探, 2011, 46 (01) :70-75+164+170
[4]   基于双提升小波的自适应混沌信号降噪 [J].
刘云侠 ;
杨国诗 ;
贾群 .
电子学报, 2011, 39 (01) :13-17
[5]   分段线性混沌系统的构造研究 [J].
李冠林 ;
陈希有 .
电子学报, 2008, (09) :1814-1818
[6]   基于EMD虚拟通道的ICA算法在信号消噪中的应用 [J].
李洪 ;
孙云莲 .
北京邮电大学学报, 2007, (05) :33-36
[7]   改进局部投影算法的混沌降噪研究 [J].
韩敏 ;
刘玉花 ;
史志伟 ;
项牧 .
系统仿真学报, 2007, (02) :364-368
[8]  
Filtering noisy chaotic signal via sparse representation based on random frame dictionary[J] . Xie Zong-Bo,Feng Jiu-Chao. Chinese Physics B . 2010 (5)
[9]   Qualitative identification of chaotic systems behaviours [J].
Vicha, T. ;
Dohnal, M. .
CHAOS SOLITONS & FRACTALS, 2008, 38 (01) :70-78
[10]  
Independent component analysis: algorithms and applications[J] . Neural Networks . 2000 (4)