Effect of cryogenic rolling and annealing on the microstructure evolution and mechanical properties of 304 stainless steel

被引:0
作者
Jin-tao Shi [1 ]
Long-gang Hou [1 ]
Jin-rong Zuo [1 ]
Lin-zhong Zhuang [1 ]
Ji-shan Zhang [1 ]
机构
[1] State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing
基金
中国国家自然科学基金;
关键词
stainless steel; cryogenic rolling; annealing; microstructural evolution; mechanical properties; recrystallization;
D O I
暂无
中图分类号
TG142.71 [不锈钢、耐酸钢]; TG161 [钢的热处理]; TG337.5 [不锈钢轧制];
学科分类号
080201 ; 080502 ; 080503 ;
摘要
Metastable 304 austenitic stainless steel was subjected to rolling at cryogenic and room temperatures, followed by annealing at different temperatures from 500 to 950°C. Phase transition during annealing was studied using X-ray diffractometry. Transmission electron microscopy and electron backscattered diffraction were used to characterize the martensite transformation and the distribution of austenite grain size after annealing. The recrystallization mechanism during cryogenic rolling was a reversal of martensite into austenite and austenite growth. Cryogenic rolling followed by annealing refined grains to 4.7 μm compared with 8.7 μm achieved under room-temperature rolling, as shown by the electron backscattered diffraction images. Tensile tests showed significantly improved mechanical properties after cryogenic rolling as the yield strength was enhanced by 47% compared with room-temperature rolling.
引用
收藏
页码:638 / 645
页数:8
相关论文
共 27 条
[1]   304奥氏体不锈钢超低温轧制变形诱发马氏体转变的定量分析及组织表征 [J].
史金涛 ;
侯陇刚 ;
左锦荣 ;
卢林 ;
崔华 ;
张济山 .
金属学报, 2016, 52 (08) :945-955
[2]   退火工艺对深冷轧制AISI310S不锈钢组织和性能的影响 [J].
熊毅 ;
王俊北 ;
陈路飞 ;
路妍 ;
任凤章 ;
张凌峰 ;
马景灵 .
材料热处理学报, 2016, 37 (04) :101-107
[3]   深冷轧制对AISI 310S不锈钢组织和性能的影响 [J].
李鹏燕 ;
熊毅 ;
陈路飞 ;
任凤章 ;
王晓国 .
材料热处理学报, 2015, 36 (03) :112-117
[4]  
Effect of cryorolling on the microstructure and tensile properties of bulk nano-austenitic stainless steel[J] . Barna Roy,Rajesh Kumar,Jayanta Das.Materials Science & Engineering A . 2015
[5]  
The role of martensitic transformation on bimodal grain structure in ultrafine grained AISI 304L stainless steel[J] . S. Sabooni,F. Karimzadeh,M.H. Enayati,A.H.W. Ngan.Materials Science & Engineering A . 2015
[6]  
Effect of twin spacing, dislocation density and crystallite size on the strength of nanostructured α-brass[J] . N.K. Kumar,B. Roy,J. Das.Journal of Alloys and Compounds . 2015
[7]   Martensite Formation in Conventional and Isothermal Tension of 304 Austenitic Stainless Steel Measured by X-ray Diffraction [J].
Moser, Newell H. ;
Gross, Todd S. ;
Korkolis, Yannis P. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2014, 45A (11) :4891-4896
[8]   Producing Nanostructured 304 Stainless Steel by Rolling at Cryogenic Temperature [J].
Ye, K. L. ;
Luo, H. Y. ;
Lv, J. L. .
MATERIALS AND MANUFACTURING PROCESSES, 2014, 29 (06) :754-758
[9]  
Ultrahigh strength of ultrafine grained austenitic stainless steel induced by accumulative rolling and annealing[J] . Y.F. Shen,X.M. Zhao,X. Sun,Y.D. Wang,L. Zuo.Scripta Materialia . 2014
[10]  
Tensile ductility of nanotwinned austenitic grains in an austenitic steel[J] . F.K. Yan,N.R. Tao,K. Lu.Scripta Materialia . 2014