Solution of an open problem for Schur convexity or concavity of the Gini mean values

被引:0
作者
CHU YuMing1 & XIA WeiFeng2 1 Department of Mathematics
机构
基金
中国国家自然科学基金;
关键词
Gini mean values; Schur convex; Schur concave;
D O I
暂无
中图分类号
O174.13 [凸函数、凸集理论];
学科分类号
070104 ;
摘要
The Schur convexity or concavity problem of the Gini mean values S(a, b; x, y) with respect to (x, y) ∈ (0, ∞) × (0, ∞) for fixed (a, b) ∈ R × R is still open. In this paper, we prove that S(a, b; x, y) is Schur convex with respect to (x, y) ∈ (0, ∞) × (0, ∞) if and only if (a, b) ∈ {(a, b) : a 0, b 0, a + b 1}, and Schur concave with respect to (x, y) ∈ (0, ∞) × (0, ∞) if and only if (a, b) ∈ {(a, b) : b 0, b a, a + b 1} ∪ {(a, b) : a 0, a b, a + b 1}.
引用
收藏
页码:2099 / 2106
页数:8
相关论文
共 4 条
[1]   Necessary and sufficient conditions such that extended mean values are Schur-convex or Schur-concave [J].
Chu, Yuming ;
Zhang, Xiaoming .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2008, 48 (01) :229-238
[2]   A note on Schur-convexity of extended mean values [J].
Qi, F .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2005, 35 (05) :1787-1793
[3]  
CONVEXITY, SCHUR-CONVEXITY AND BOUNDS FOR THE GAMMA FUNCTION INVOLVING THE DIGAMMA FUNCTION[J] . The Rocky Mountain Journal of Mathematics . 1998 (3)
[4]  
Stochastic ordering and schur-convex functions in comparison of linear experiments[J] . Metrika . 1989 (1)