ZERO-DIMENSIONAL GLOBAL ATTRACTOR OF DAMPED SINE-GORDON EQUATION

被引:0
作者
秦文新
周盛凡
机构
关键词
Global attractor; sine-Gordon equation; equilibrium point; Lyapunov function;
D O I
暂无
中图分类号
O177 [泛函分析];
学科分类号
070104 ;
摘要
We investigate the global attractor of damped sine-Gordon equation with homogeneousDirichlet boundary condition. We prove the existence of global attractor. Under some conditionson the parameters, we show the global attractor is zero-dimensional and is exactly the uniqueequilibrium point of the system.
引用
收藏
页码:260 / 264
页数:5
相关论文
共 50 条
  • [31] Weingarten surfaces and sine-Gordon equation
    Chen, WH
    Li, HZ
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1997, 40 (10): : 1028 - 1035
  • [32] Identifiability for Linearized Sine-Gordon Equation
    Ha, J.
    Gutman, S.
    [J]. MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2013, 8 (01) : 106 - 121
  • [33] Generalized solution of Sine-Gordon equation
    Chadli, Lalla Saadia
    Melliani, Said
    Moujahid, Abdelaziz
    Elomari, M'hamed
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2015, 7 (01): : 87 - 92
  • [34] On a New Avatar of the Sine-Gordon Equation
    Sakovich, S. Yu
    [J]. NONLINEAR PHENOMENA IN COMPLEX SYSTEMS, 2018, 21 (01): : 62 - 68
  • [35] Weingarten surfaces and sine-Gordon equation
    陈维桓
    李海中
    [J]. Science China Mathematics, 1997, (10) : 1028 - 1035
  • [36] Analytical solution to sine-Gordon equation
    Eleuch, H.
    Rostovtsev, Y. V.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (09)
  • [37] Weingarten surfaces and sine-Gordon equation
    Weihuan Chen
    Haizhong Li
    [J]. Science in China Series A: Mathematics, 1997, 40 : 1028 - 1035
  • [38] Conservation laws in sine-Gordon equation
    Shi, LN
    Cai, H
    Li, CF
    Huang, NN
    [J]. CHINESE PHYSICS LETTERS, 2003, 20 (07) : 1003 - 1005
  • [39] Stability of the solitary manifold of the perturbed sine-Gordon equation
    Mashkin, Timur
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 486 (02)
  • [40] Modeling light bullets with the two-dimensional sine-Gordon equation
    Xin, JX
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2000, 135 (3-4) : 345 - 368