K-Spaces Property of Product Spaces

被引:0
|
作者
Liu Chuan
Lin Shou Department of Mathematics
机构
关键词
K--space; K--network; Weak base; Product space; BF(ω2); Tanaka’s condition;
D O I
暂无
中图分类号
O177 [泛函分析];
学科分类号
070104 ;
摘要
Let K be a class of spaces which are eigher a pseudo-open s-image of a metric space or ak-space having a compact-countable closed k-network. Let K′ be a class of spaces which are either aFréchet space with a point-countable k-network or a point-Gk-space having a compact-countablek-network. In this paper, we obtain some sufficient and necessary conditions that the products offinitely or countably many spaces in the class K or K′ are a k-space. The main results are thatTheorem A If X, Y ∈ K. Then X x Y is a k-space if and only if (X, Y) has the Tanaka’scondition.Theorem B The following are equivalent:(a) BF(w2) is false.(b) For each X, Y ∈ K′, X x Y is a k-space if and only if (X, Y) has the Tanaka’s condition.
引用
收藏
页码:537 / 544
页数:8
相关论文
共 50 条
  • [31] Product (α1, α2)-modulation spaces
    Cleanthous, Galatia
    Georgiadis, Athanasios G.
    SCIENCE CHINA-MATHEMATICS, 2022, 65 (08) : 1599 - 1640
  • [32] Sequential order of product of Frechet spaces
    Nogura, T
    Shibakov, A
    TOPOLOGY AND ITS APPLICATIONS, 1996, 70 (2-3) : 245 - 253
  • [33] Mapping Green Product Spaces of Nations
    Hamwey, Robert
    Pacini, Henrique
    Assuncao, Lucas
    JOURNAL OF ENVIRONMENT & DEVELOPMENT, 2013, 22 (02) : 155 - 168
  • [34] Anisotropic singular integrals in product spaces
    BOWNIK Marcin
    Science China(Mathematics), 2010, 53 (12) : 3163 - 3178
  • [35] SEQUENTIAL ORDER OF PRODUCT-SPACES
    NOGURA, T
    SHIBAKOV, A
    TOPOLOGY AND ITS APPLICATIONS, 1995, 65 (03) : 271 - 285
  • [36] Primes and order structure in the product spaces
    Bichara A.
    Misfeld J.
    Zanella C.
    Journal of Geometry, 1997, 58 (1-2) : 53 - 60
  • [37] Anisotropic singular integrals in product spaces
    Li BaoDe
    Bownik, Marcin
    Yang DaChun
    Zhou Yuan
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (12) : 3163 - 3178
  • [38] Anisotropic singular integrals in product spaces
    BaoDe Li
    Marcin Bownik
    DaChun Yang
    Yuan Zhou
    Science China Mathematics, 2010, 53 : 3163 - 3178
  • [39] Product (α1, α2)-modulation spaces
    Galatia Cleanthous
    Athanasios G. Georgiadis
    Science China Mathematics, 2022, 65 : 1599 - 1640
  • [40] On spaces with a star-countable k-network
    Sakai, M
    HOUSTON JOURNAL OF MATHEMATICS, 1997, 23 (01): : 45 - 56