Some limit results on supremum of Shepp statistics for fractional Brownian motion

被引:0
作者
TAN Zhong-quan [1 ,2 ]
CHEN Yang [3 ]
机构
[1] School of Mathematical Sciences, Zhejiang University
[2] College of Mathematics, Physics and Information Engineering, Jiaxing University
[3] School of Mathematics and Physics, Suzhou University of Science and Technology
基金
美国国家科学基金会;
关键词
Extremes; Shepp statistics; fractional Brownian motion; exact asymptotic; almost sure limit theorem;
D O I
暂无
中图分类号
O211.4 [极限理论];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Define the incremental fractional Brownian field ZH(τ,s)=BH(s+τ)-BH(s),where BH(s) is a standard fractional Brownian motion with Hurst parameter H ∈(0,1).In this paper,we first derive an exact asymptotic of distribution of the maximum MH(Tu)=supτ∈[0,1],s∈[0,xTu]ZH(τ,s),which holds uniformly for x ∈[A,B]with A,B two positive constants.We apply the findings to analyse the tail asymptotic and limit theorem of MH(τ) with a random index τ.In the end,we also prove an ahnost sure limit theorem for the maximum M1/2(T) with non-random index T.
引用
收藏
页码:269 / 282
页数:14
相关论文
共 28 条
[1]   EXTREMES OF A CLASS OF NONHOMOGENEOUS GAUSSIAN RANDOM FIELDS [J].
Debicki, Krzysztof ;
Hashorva, Enkelejd ;
Ji, Lanpeng .
ANNALS OF PROBABILITY, 2016, 44 (02) :984-1012
[2]   EXTREMES OF HOMOGENEOUS GAUSSIAN RANDOM FIELDS [J].
Debicki, Krzysztof ;
Hashorva, Enkelejd ;
Soja-Kukiela, Natalia .
JOURNAL OF APPLIED PROBABILITY, 2015, 52 (01) :55-67
[3]   Tail asymptotics of supremum of certain Gaussian processes over threshold dependent random intervals [J].
Debicki, Krzysztof ;
Hashorva, Enkelejd ;
Ji, Lanpeng .
EXTREMES, 2014, 17 (03) :411-429
[4]   Large deviations of Shepp statistics for fractional Brownian motion [J].
Hashorva, Enkelejd ;
Tan, Zhongquan .
STATISTICS & PROBABILITY LETTERS, 2013, 83 (10) :2242-2247
[5]   An almost sure limit theorem for the maxima of smooth stationary Gaussian processes [J].
Tan, Zhongquan .
STATISTICS & PROBABILITY LETTERS, 2013, 83 (09) :2135-2141
[6]   Limit laws for maxima of a stationary random sequence with random sample size [J].
Freitas, A. ;
Huesler, J. ;
Temido, M. G. .
TEST, 2012, 21 (01) :116-131
[7]  
Exact asymptotics of supremum of a stationary Gaussian process over a random interval.[J]..Statistics and Probability Letters.2011, 3
[8]   Asymptotics of supremum distribution of a Gaussian process over a Weibullian time [J].
Arendarczyk, Marek ;
Debicki, Krzysztof .
BERNOULLI, 2011, 17 (01) :194-210
[9]  
Extremes of the standardized Gaussian noise.[J].Zakhar Kabluchko.Stochastic Processes and their Applications.2010, 3
[10]   Extremes of Shepp statistics for the Wiener process [J].
Zholud, Dmitrii .
EXTREMES, 2008, 11 (04) :339-351