Hot Deformation and Corrosion Resistance of High-Strength Low-Alloy Steel

被引:0
|
作者
Wilasinee Kingkam [1 ]
Cheng-Zhi Zhao [1 ,2 ]
Hong Li [1 ]
He-Xin Zhang [1 ,2 ]
Zhi-Ming Li [3 ]
机构
[1] College of Materials Science and Chemical Engineering,Harbin Engineering University
[2] Key Laboratory of Superlight Materials and Surface Technology,Ministry of Education,Harbin Engineering University
[3] College of Power and Energy Engineering,Harbin Engineering University
基金
中央高校基本科研业务费专项资金资助;
关键词
Dynamic recrystallization; Potentiodynamic polarization; Hot deformation; Flow stress; High-strength low-alloy steel;
D O I
暂无
中图分类号
TG142.33 [合金钢]; TG156 [热处理工艺];
学科分类号
摘要
The hot deformation characteristics and the corrosion behavior of a high-strength low-alloy(HSLA) steel were investigated at deformation temperatures ranging from 800 to 1100 ℃ and strain rates ranging from 0.1 to 10 s-1 using an MMS-200 thermal simulation testing machine. Based on the flow curves from the experiment, the effects of temperature and strain rate on the dynamic recrystallization behavior were analyzed. The flow stress decreased with increasing deformation temperature and decreasing strain rate. With the assistance of the process parameters, constitutive equations were used to obtain the activation energy and hot working equation. The hot deformation activation energy of HSLA steel in this work was 351.87 kJ/mol. The work hardening rate was used to determine the critical stress(strain) or the peak stress(strain). The dependence of these characteristic values on the Zener-Hollomon parameter was found. A dynamic recrystallization kinetics model of the tested HSLA steel was constructed, and the validity of the model was confirmed by the experimental results. Observation of the microstructures indicated that the grain size increased with increasing deformation temperature,which led to a lowered corrosion resistance of the specimens.
引用
收藏
页码:495 / 505
页数:11
相关论文
共 50 条
  • [41] WELDABILITY OF A NEW HIGH-STRENGTH LOW-ALLOY CAST STEEL
    KENYON, N
    MINARD, LD
    WELDING JOURNAL, 1976, 55 (01) : S28 - S31
  • [42] Tempering Behavior of Novel Low-Alloy High-Strength Steel
    Dudko, Valeriy
    Yuzbekova, Diana
    Gaidar, Sergey
    Vetrova, Sofia
    Kaibyshev, Rustam
    METALS, 2022, 12 (12)
  • [43] WELDABILITY OF NIOBIUM CONTAINING HIGH-STRENGTH LOW-ALLOY STEEL
    GRAY, JM
    WELDING RESEARCH COUNCIL BULLETIN, 1976, (213): : 1 - 19
  • [45] CALCULATION OF WELDING CONDITIONS FOR HIGH-STRENGTH LOW-ALLOY STEEL
    KASATKIN, OG
    MUSIYACHENKO, VF
    AUTOMATIC WELDING USSR, 1977, 30 (10): : 1 - 4
  • [46] CAVITATION DAMAGES MORPHOLOGY OF HIGH-STRENGTH LOW-ALLOY STEEL
    Aleksic, V.
    Dojcinovic, M.
    Milovic, Lj.
    Samardzic, I.
    METALURGIJA, 2016, 55 (03): : 423 - 425
  • [47] DEVELOPMENT OF ELECTRODES FOR WELDING HIGH-STRENGTH LOW-ALLOY STEEL
    TARLINSK.VD
    WELDING PRODUCTION, 1972, 19 (10): : 55 - 58
  • [48] Ballistic performance of high-strength low-alloy steel weldments
    Reddy, GM
    Mohandas, T
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 1996, 57 (1-2) : 23 - 30
  • [49] High-strength low-alloy powder steel with a composite structure
    Meilakh A.G.
    Steel in Translation, 2009, 39 (11) : 1035 - 1037
  • [50] EFFECT OF PURITY ON TOUGHNESS OF A LOW-ALLOY HIGH-STRENGTH STEEL
    EVANS, PRV
    OWEN, NB
    WILKINS, MA
    JOURNAL OF THE IRON AND STEEL INSTITUTE, 1972, 210 (MAR): : 200 - &