Satellite Image Matching Method Based on Deep Convolutional Neural Network

被引:18
|
作者
Dazhao FAN [1 ]
Yang DONG [1 ]
Yongsheng ZHANG [1 ]
机构
[1] Institute of Geospatial Information,Information Engineering University
基金
中国国家自然科学基金;
关键词
image matching; deep learning; convolutional neural network; satellite image;
D O I
暂无
中图分类号
P237 [测绘遥感技术];
学科分类号
1404 ;
摘要
This article focuses on the first aspect of the album of deep learning: the deep convolutional method. The traditional matching point extraction algorithm typically uses manually designed feature descriptors and the shortest distance between them to match as the matching criterion. The matching result can easily fall into a local extreme value,which causes missing of the partial matching point. Targeting this problem,we introduce a two-channel deep convolutional neural network based on spatial scale convolution,which performs matching pattern learning between images to realize satellite image matching based on a deep convolutional neural network. The experimental results show that the method can extract the richer matching points in the case of heterogeneous,multi-temporal and multi-resolution satellite images,compared with the traditional matching method. In addition,the accuracy of the final matching results can be maintained at above 90%.
引用
收藏
页码:90 / 100
页数:11
相关论文
共 50 条
  • [21] A Medical Image Fusion Method Based on SIFT and Deep Convolutional Neural Network in the SIST Domain
    Wang, Lei
    Chang, Chunhong
    Liu, Zhouqi
    Huang, Jin
    Liu, Cong
    Liu, Chunxiang
    JOURNAL OF HEALTHCARE ENGINEERING, 2021, 2021
  • [22] Meteorological Radar Noise Image Semantic Segmentation Method Based on Deep Convolutional Neural Network
    Yang Hongyun
    Wang Fengyan
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2019, 41 (10) : 2373 - 2381
  • [23] Convolutional neural network based deep conditional random fields for stereo matching
    Wang, Zhi
    Zhu, Shiqiang
    Li, Yuehua
    Cui, Zhengzhe
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2016, 40 : 739 - 750
  • [24] A Method of Printmaking Image Generation Based on Convolutional Neural Network
    Zhou, Zhifen
    Luo, Haiying
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2024, 33 (08)
  • [25] Intrusion detection method based on a deep convolutional neural network
    Zhang S.
    Xie X.
    Xu Y.
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2019, 59 (01): : 44 - 52
  • [26] Multifocus image fusion method based on a convolutional neural network
    Zhai, Hao
    Zhuang, Yi
    JOURNAL OF ELECTRONIC IMAGING, 2019, 28 (02)
  • [27] Convolutional neural network and adaptive guided image filter based stereo matching
    Wen, Sihan
    2017 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS AND TECHNIQUES (IST), 2017, : 473 - 478
  • [28] Image Classification of Time Series Based on Deep Convolutional Neural Network
    Cao, Wenjie
    Zhang, Cheng
    Xiong, Zhenzhen
    Wang, Ting
    Chen, Junchao
    Zhang, Bengong
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 8488 - 8491
  • [29] Tongue image quality assessment based on a deep convolutional neural network
    Jiang, Tao
    Hu, Xiao-juan
    Yao, Xing-hua
    Tu, Li-ping
    Huang, Jing-bin
    Ma, Xu-xiang
    Cui, Ji
    Wu, Qing-feng
    Xu, Jia-tuo
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2021, 21 (01)
  • [30] Texture based Image Species Classification with Deep Convolutional Neural Network
    Sharma, Geetanjali
    Krishna, C. Rama
    2019 IEEE 5TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2019,