Satellite Image Matching Method Based on Deep Convolutional Neural Network

被引:19
|
作者
Dazhao FAN [1 ]
Yang DONG [1 ]
Yongsheng ZHANG [1 ]
机构
[1] Institute of Geospatial Information,Information Engineering University
基金
中国国家自然科学基金;
关键词
image matching; deep learning; convolutional neural network; satellite image;
D O I
暂无
中图分类号
P237 [测绘遥感技术];
学科分类号
1404 ;
摘要
This article focuses on the first aspect of the album of deep learning: the deep convolutional method. The traditional matching point extraction algorithm typically uses manually designed feature descriptors and the shortest distance between them to match as the matching criterion. The matching result can easily fall into a local extreme value,which causes missing of the partial matching point. Targeting this problem,we introduce a two-channel deep convolutional neural network based on spatial scale convolution,which performs matching pattern learning between images to realize satellite image matching based on a deep convolutional neural network. The experimental results show that the method can extract the richer matching points in the case of heterogeneous,multi-temporal and multi-resolution satellite images,compared with the traditional matching method. In addition,the accuracy of the final matching results can be maintained at above 90%.
引用
收藏
页码:90 / 100
页数:11
相关论文
共 50 条
  • [21] Tongue image quality assessment based on a deep convolutional neural network
    Jiang, Tao
    Hu, Xiao-juan
    Yao, Xing-hua
    Tu, Li-ping
    Huang, Jing-bin
    Ma, Xu-xiang
    Cui, Ji
    Wu, Qing-feng
    Xu, Jia-tuo
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2021, 21 (01)
  • [22] Tongue image quality assessment based on a deep convolutional neural network
    Tao Jiang
    Xiao-juan Hu
    Xing-hua Yao
    Li-ping Tu
    Jing-bin Huang
    Xu-xiang Ma
    Ji Cui
    Qing-feng Wu
    Jia-tuo Xu
    BMC Medical Informatics and Decision Making, 21
  • [23] Common pests image recognition based on deep convolutional neural network
    Wang, Jin
    Li, Yane
    Feng, Hailin
    Ren, Lijin
    Du, Xiaochen
    Wu, Jian
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2020, 179
  • [24] Convolutional neural network based deep conditional random fields for stereo matching
    Wang, Zhi
    Zhu, Shiqiang
    Li, Yuehua
    Cui, Zhengzhe
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2016, 40 : 739 - 750
  • [25] A Spectrogram Image-Based Network Anomaly Detection System Using Deep Convolutional Neural Network
    Khan, Adnan Shahid
    Ahmad, Zeeshan
    Abdullah, Johari
    Ahmad, Farhan
    IEEE ACCESS, 2021, 9 : 87079 - 87093
  • [26] Stereo Matching Based on Convolutional Neural Network
    Xiao Jinsheng
    Tian Hong
    Zou Wentao
    Tong Le
    Lei Junfeng
    ACTA OPTICA SINICA, 2018, 38 (08)
  • [27] IMAGE REGISTRATION OF SATELLITE IMAGERY WITH DEEP CONVOLUTIONAL NEURAL NETWORKS
    Vakalopoulou, Maria
    Christodoulidis, Stergios
    Sahasrabudhe, Mihir
    Mougiakakou, Stavroula
    Paragios, Nikos
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 4939 - 4942
  • [28] Image Retrieval Algorithm Based on Convolutional Neural Network
    Liu, Hailong
    Li, Baoan
    Lv, Xueqiang
    Huang, Yue
    PROCEEDINGS OF THE 2016 2ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INDUSTRIAL ENGINEERING (AIIE 2016), 2016, 133 : 278 - 281
  • [29] CAPTCHA recognition based on deep convolutional neural network
    Wang, Jing
    Qin, Jiaohua
    Xiang, Xuyu
    Tan, Yun
    Pan, Nan
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2019, 16 (05) : 5851 - 5861
  • [30] Acupoint Detection Based on Deep Convolutional Neural Network
    Sun, Lingyao
    Sun, Shiying
    Fu, Yuanbo
    Zhao, Xiaoguang
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 7418 - 7422