Solutions of the Schrdinger Equation for PT-Symmetric Coupled Quintic Potentials in Two Dimensions

被引:0
作者
Savita [1 ]
Fakir Chand [2 ]
机构
[1] Department of Physics,TERI,Kurukshetra-136119,India
[2] Department of Physics,Kurukshetra University Kurukshetra-136119,India
关键词
Schrodinger equation; quintic potential; PT-symmetry; eigenvalue; eigenfunction;
D O I
暂无
中图分类号
O411 [物理学的数学方法];
学科分类号
0701 ;
摘要
This paper deals with the solutions of time independent Schrodinger wave equation for a two-dimensionalVT-symmetric coupled quintic potential in its most general form.Employing wavefunction ansatz method,generalanalytic expressions for eigenvalues and eigenfunctions for first four states are obtained.Solutions of a particular caseare also presented.
引用
收藏
页码:419 / 422
页数:4
相关论文
共 6 条
  • [1] Eigenvalue spectra of a <Emphasis Type="Italic">PT</Emphasis>-symmetric coupled quartic potential in two dimensions.[J].Fakir Chand;Savita;S. C. Mishra.Pramana.2010, 4
  • [2] Solution of Schrödinger Equation for Two-Dimensional Complex Quartic Potentials.[J].Ram Mehar Singh;Fakir Chand;S. C. Mishra.Communications in Theoretical Physics.2009, 3
  • [3] Pseudo-Hermiticity of Hamiltonians under gauge-like transformation: real spectrum of non-Hermitian Hamiltonians.[J].Zafar Ahmed.Physics Letters A.2002, 5
  • [4] A new class of PT-symmetric Hamiltonians with real spectra.[J].F. Cannata;M. Ioffe;R. Roychoudhury;P. Roy.Physics Letters A.2001, 5
  • [5] A PT-invariant potential with complex QES eigenvalues.[J].Avinash Khare;Bhabani Prasad Mandal.Physics Letters A.2000, 1
  • [6] PT-symmetric sextic potentials.[J].B. Bagchi;F. Cannata;C. Quesne.Physics Letters A.2000, 2