Global existence theory for the two-dimensional derivative Ginzburg-Landau equation

被引:0
|
作者
CAO Zhenchao+1
2. Institute of Applied Physics and Computational Mathematics
机构
关键词
Ginzburg-Landau equation; global existence;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
The generalized derivative Ginzburg-Landau equation in two spatial dimensions is discussed. The existence and uniqueness of global solution are obtained by Galerkin method and by a priori estimates on the solution in H+1 -norm and H +2-norm.
引用
收藏
页码:393 / 395
页数:3
相关论文
共 50 条
  • [11] Phase diagram of the two-dimensional complex Ginzburg-Landau equation
    Chate, H
    Mauneville, P
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1996, 224 (1-2) : 348 - 368
  • [12] Supertransient chaos in the two-dimensional complex Ginzburg-Landau equation
    Braun, R.
    Feudel, F.
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1996, 53 (6-B pt B):
  • [13] Stable vortex solitons in the two-dimensional Ginzburg-Landau equation
    Crasovan, LC
    Malomed, BA
    Mihalache, D
    PHYSICAL REVIEW E, 2001, 63 (01):
  • [14] Phase turbulence in the two-dimensional complex Ginzburg-Landau equation
    Manneville, P
    Chate, H
    PHYSICA D-NONLINEAR PHENOMENA, 1996, 96 (1-4) : 30 - 46
  • [15] Supertransient chaos in the two-dimensional complex Ginzburg-Landau equation
    Braun, R
    Feudel, F
    PHYSICAL REVIEW E, 1996, 53 (06): : 6562 - 6565
  • [16] Spiral solutions of the two-dimensional complex Ginzburg-Landau equation
    Liu, SD
    Liu, SK
    Fu, ZT
    Zhao, Q
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2001, 35 (02) : 159 - 161
  • [17] Finite dimensional behaviour for the derivative Ginzburg-Landau equation in two spatial dimensions
    Guo, BL
    Wang, BX
    PHYSICA D, 1995, 89 (1-2): : 83 - 99
  • [18] Final dimensional behaviour for the derivative Ginzburg-Landau equation in two spatial dimensions
    Guo, B.
    Wang, B.
    Physica D: Nonlinear Phenomena, 1995, 89 (1-2)
  • [19] EFFICIENT NUMERICAL SCHEMES FOR TWO-DIMENSIONAL GINZBURG-LANDAU EQUATION IN SUPERCONDUCTIVITY
    Kong, Linghua
    Kuang, Liqun
    Wang, Tingchun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (12): : 6325 - 6347
  • [20] Two-dimensional discrete Ginzburg-Landau solitons
    Efremidis, Nikolaos K.
    Christodoulides, Demetrios N.
    Hizanidis, Kyriakos
    PHYSICAL REVIEW A, 2007, 76 (04):