Minimal Gated Unit for Recurrent Neural Networks

被引:1
作者
Guo-Bing Zhou
Jianxin Wu
Chen-Lin Zhang
Zhi-Hua Zhou
机构
[1] NationalKeyLaboratoryforNovelSoftwareTechnology,NanjingUniversity
关键词
Recurrent neural network; minimal gated unit(MGU); gated unit; gate recurrent unit(GRU); long short-term memory(LSTM); deep learning;
D O I
暂无
中图分类号
TP183 [人工神经网络与计算];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recurrent neural networks(RNN) have been very successful in handling sequence data.However,understanding RNN and finding the best practices for RNN learning is a difficult task,partly because there are many competing and complex hidden units,such as the long short-term memory(LSTM) and the gated recurrent unit(GRU).We propose a gated unit for RNN,named as minimal gated unit(MGU),since it only contains one gate,which is a minimal design among all gated hidden units.The design of MGU benefits from evaluation results on LSTM and GRU in the literature.Experiments on various sequence data show that MGU has comparable accuracy with GRU,but has a simpler structure,fewer parameters,and faster training.Hence,MGU is suitable in RNN s applications.Its simple architecture also means that it is easier to evaluate and tune,and in principle it is easier to study MGU s properties theoretically and empirically.
引用
收藏
页码:226 / 234
页数:9
相关论文
共 5 条
[1]  
Framewise phoneme classification with bidirectional LSTM and other neural network architectures[J] . Alex Graves,Jürgen Schmidhuber.Neural Networks . 2005 (5)
[2]   Long short-term memory [J].
Hochreiter, S ;
Schmidhuber, J .
NEURAL COMPUTATION, 1997, 9 (08) :1735-1780
[3]  
Empirical evaluation of gated recurrent neural networks on sequence modeling .2 J.Chung,C.Gulcehre,K.Cho et al. . 2014
[4]  
Learning word vectors for sentiment analysis .2 Maas A L,Daly R E,Pham P T,et al. Pro-ceedings of the 49th Annual Meeting of the Association for Computational Linguistics (ACL) . 2011
[5]  
http://yann.lecun.com/exdb/mnist .