An Adaptive Clustering Algorithm for Intrusion Detection

被引:0
|
作者
QIU JuliNormal University of AnshanAnshanChina [114005 ]
机构
关键词
clustering; data mining; intrusion detection; wavelet transforms;
D O I
10.16652/j.issn.1004-373x.2007.02.044
中图分类号
TP274 [数据处理、数据处理系统];
学科分类号
0804 ; 080401 ; 080402 ; 081002 ; 0835 ;
摘要
In this paper,we introduce an adaptive clustering algorithm for intrusion detection based on wavecluster which was introduced by Gholamhosein in 1999 and used with success in image processing.Because of the non-stationary characteristic of network traffic,we extend and develop an adaptive wavecluster algorithm for intrusion detection.Using the multiresolution property of wavelet transforms,we can effectively identify arbitrarily shaped clusters at different scales and degrees of detail,moreover,applying wavelet transform removes the noise from the original feature space and make more accurate cluster found.Experimental results on KDD-99 intrusion detection dataset show the efficiency and accuracy of this algorithm.A detection rate above 96% and a false alarm rate below 3% are achieved.
引用
收藏
页码:130 / 132
页数:3
相关论文
共 1 条
  • [1] WaveCluster: a wavelet-based clustering approach for spatial data in very large databases[J] . Gholamhosein Sheikholeslami,Surojit Chatterjee,Aidong Zhang.The VLDB Journal . 2000 (3-4)