Recent developments and consideration issues in solid adsorbents for CO2 capture from flue gas

被引:1
|
作者
Lijuan Nie [1 ,2 ]
Yuanyuan Mu [1 ,2 ]
Junsu Jin [1 ]
Jian Chen [2 ]
Jianguo Mi [1 ]
机构
[1] Beijing Key Laboratory of Membrane Science and Technology,Beijing University of Chemical Technology
[2] State Key Laboratory of Chemical Engineering,Department of Chemical Engineering,Tsinghua University
关键词
CO2; capture; Adsorption; Adsorbents; Inorganic materials; Organic materials;
D O I
暂无
中图分类号
TQ424 [吸附剂]; X701 [废气的处理与利用];
学科分类号
0817 ; 083002 ;
摘要
The increase in energy demand caused by industrialization leads to abundant CO2emissions into atmosphere and induces abrupt rise in earth temperature. It is vital to acquire relatively simple and cost-effective technologies to separate CO2from the flue gas and reduce its environmental impact. Solid adsorption is now considered an economic and least interfering way to capture CO2, in that it can accomplish the goal of small energy penalty and few modifications to power plants. In this regard, we attempt to review the CO2adsorption performances of several types of solid adsorbents, including zeolites, clays, activated carbons, alkali metal oxides and carbonates, silica materials, metal–organic frameworks, covalent organic frameworks, and polymerized high internal phase emulsions. These solid adsorbents have been assessed in their CO2adsorption capacities along with other important parameters including adsorption kinetics, effect of water, recycling stability and regenerability. In particular,the superior properties of adsorbents enhanced by impregnating or grafting amine groups have been discussed for developing applicable candidates for industrial CO2capture.
引用
收藏
页码:2303 / 2317
页数:15
相关论文
共 50 条
  • [1] Recent developments and consideration issues in solid adsorbents for CO2 capture from flue gas
    Nie, Lijuan
    Mu, Yuanyuan
    Jin, Junsu
    Chen, Jian
    Mi, Jianguo
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2018, 26 (11) : 2303 - 2317
  • [2] Recent developments on polymeric membranes for CO2 capture from flue gas
    Han, Yang
    Ho, W. S. Winston
    JOURNAL OF POLYMER ENGINEERING, 2020, 40 (06) : 529 - 542
  • [3] Recent Developments in Polymeric Adsorbents for CO2 Capture
    Kaur, Jasmine
    Singh, Sudhir Kumar
    Gupta, Raj Kumar
    Bhunia, Haripada
    Dubey, K. A.
    Chaudhari, C. V.
    CHEMISTRYSELECT, 2025, 10 (06):
  • [4] Synergistic effect of surfactant and silica nanoflowers support on CO2 capture from simulated flue gas by solid amine adsorbents
    Li, Wenhao
    Fu, Dong
    CHEMICAL PHYSICS LETTERS, 2024, 843
  • [5] Aminosilane-Grafted Polymer/Silica Hollow Fiber Adsorbents for CO2 Capture from Flue Gas
    Rezaei, Fateme
    Lively, Ryan P.
    Labreche, Ying
    Chen, Grace
    Fan, Yanfang
    Koros, William J.
    Jones, Christopher W.
    ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (09) : 3921 - 3931
  • [6] CO2 Capture from Flue Gas with Monoethanolamine
    Cebrucean, Viorica
    Ionel, Ioana
    REVISTA DE CHIMIE, 2012, 63 (07): : 678 - 681
  • [7] Recent progress on advanced solid adsorbents for CO2 capture: From mechanism to machine learning
    Khosrowshahi, Mobin Safarzadeh
    Aghajari, Amirhossein Afshari
    Rahimi, Mohammad
    Maleki, Farid
    Ghiyabi, Elahe
    Rezanezhad, Armin
    Bakhshi, Ali
    Salari, Ehsan
    Shayesteh, Hadi
    Mohammadi, Hadi
    MATERIALS TODAY SUSTAINABILITY, 2024, 27
  • [8] Development of new adsorbents for CO2 separation from flue gas
    Vavrova, Jana
    Ciahotny, Karel
    Stefanica, Jiri
    Prochazka, Pavel
    PROCEEDINGS OF THE 1ST INTERNATIONAL CONFERENCE ON CHEMICAL TECHNOLOGY, 2013, : 370 - 375
  • [9] A site trial demonstration of CO2 capture from real flue gas by novel carbon fibre composite monolith adsorbents
    Thiruvenkatachari, Ramesh
    Su, Shi
    Yu, Xin Xiang
    Jin, Yonggang
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2015, 42 : 415 - 423
  • [10] Guanidinylated poly(allylamine) supported on mesoporous silica for CO2 capture from flue gas
    Alkhabbaz, Mustafa A.
    Khunsupat, Ratayakorn
    Jones, Christopher W.
    FUEL, 2014, 121 : 79 - 85