OH and O radicals production in atmospheric pressure air/Ar/H2O gliding arc discharge plasma jet

被引:0
|
作者
N C ROY [1 ]
M R TALUKDER [1 ]
A N CHOWDHURY [2 ]
机构
[1] Plasma Science and Technology Laboratory, Department of Applied Physics and Electronic Engineering,University of Rajshahi
[2] Bangladesh Council of Scientific and Industrial Research Laboratory Rajshahi
关键词
reactive oxygen species(ROS); optical emission spectroscopy(OES); gliding arc discharge; plasma kinetics; broadening mechanism;
D O I
暂无
中图分类号
O53 [等离子体物理学];
学科分类号
070204 ;
摘要
Atmospheric pressure air/Ar/HO gliding arc discharge plasma is produced by a pulsed dc power supply. An optical emission spectroscopic(OES) diagnostic technique is used for the characterization of plasmas and for identifications of OH and O radicals along with other species in the plasmas. The OES diagnostic technique reveals the excitation Tx?≈?5550–9000 K, rotational Tr?≈?1350–2700 K and gas Tg?≈?850–1600 K temperatures, and electron density n?(1.1-1.9) ′101 4 cme under different experimental conditions. The production and destruction of OH and O radicals are investigated as functions of applied voltage and air flow rate. Relative intensities of OH and O radicals indicate that their production rates are increased with increasing Ar content in the gas mixture and applied voltage. nereveals that the higher densities of OH and O radicals are produced in the discharge due to more effective electron impact dissociation of HO and Omolecules caused by higher kinetic energies as gained by electrons from the enhanced electric field as well as by enhanced n e.The productions of OH and O are decreasing with increasing air flow rate due to removal of Joule heat from the discharge region but enhanced air flow rate significantly modifies discharge maintenance properties. Besides, Tgsignificantly reduces with the enhanced air flow rate. This investigation reveals that Ar plays a significant role in the production of OH and O radicals.
引用
收藏
页码:75 / 84
页数:10
相关论文
共 22 条
  • [21] Diagnostic study of low-pressure Ar-O2 remote plasma generated in HCD-L 300 system:: Relative density of O atom
    Saloum, S.
    Naddaf, M.
    VACUUM, 2007, 82 (01) : 66 - 71
  • [22] Excitation Frequency-Controlled Cold Atmospheric Pressure Plasma: Effects of N2 Admixture on Ar Discharge Properties and Breast Cancer Cell Death
    Misra, Vandana Chaturvedi
    Bellare, Ganesh Pai
    Tiwari, Nirupama
    Patro, Birija Sankar
    Ghorui, Srikumar
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2024, 52 (07) : 2428 - 2437