Quadratic Residues and Non-residues for Infinitely Many Piatetski-Shapiro Primes

被引:0
作者
Ping XI [1 ]
机构
[1] School of Mathematics and Statistics, Xi’an Jiaotong University
基金
中国国家自然科学基金; 中央高校基本科研业务费专项资金资助;
关键词
Quadratic residue; quadratic non-residue; Piatetski-Shapiro prime;
D O I
暂无
中图分类号
O156 [数论];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove a quantitative version of the statement that every nonempty finite subset of N+ is a set of quadratic residues for infinitely many primes of the form [nc] with 1 ≤ c ≤243/205. Correspondingly, we can obtain a similar result for the case of quadratic non-residues under reasonable assumptions. These results generalize the previous ones obtained by Wright in certain aspects.
引用
收藏
页码:515 / 522
页数:8
相关论文
共 14 条
  • [1] ON PJATECKII-SAPIRO PRIME NUMBER THEOREM
    JIA CHAOHUA
    [J]. ChineseAnnalsofMathematics, 1994, (01) : 9 - 22
  • [2] Quadratic non-residues and the combinatorics of sign multiplication. Wright,S. Ars Combinatoria .
  • [3] On the distribution of prime numbers of the form[nc]. Kumchev,A. Glasgow Mathematical Journal . 1999
  • [4] On the distribution of prime numbers in the sequence of the form[f (n)]. Piatetski-Shapiro,I. I. Math. Sb. (N.S.) . 1953
  • [5] Quadratic residues and the combinatorics of sign multiplication. Wright S. Journal of Number Theory . 2008
  • [6] On Hecke eigenvalues at Piatetski-Shapiro primes. Baier, S,Zhao, L. Journal of the London Mathematical Society . 2010
  • [7] Sommes trigonométriques sur les nombres premiers. Vaughan,R. C. C. R. Acad. Sci. Paris Sér. A-B . 1977
  • [8] Graham,S. W.,Kolesnik,G. Van der Corput’s method of exponential sums . 1991
  • [9] Prime numbers of the form[n~c]. Rivat J,Wu J. Glasgow Mathematical Journal . 2001
  • [10] On the Pjatchkil-Sapiro prime number theorem. Liu H Q,Rivat J. Bull LondonMath Soc . 1992