Improving the Solidified Structure by Optimization of Coil Configuration in Pulsed Magneto-Oscillation

被引:1
作者
Jing Zhao [1 ]
JiHao Yu [2 ]
Ke Han [3 ]
HongGang Zhong [2 ]
RenXing Li [2 ]
QiJie Zhai [2 ]
机构
[1] Department of Mechanical and Electrical Engineering,Tangshan University
[2] State Key Laboratory of Advanced Special Steel, Shanghai University
[3] National High Magnetic Field Laboratory, Florida State University
关键词
Pulsed magneto-oscillation; Coil configuration; Electromagnetic field; Flow field; Solidification structure; Optimization;
D O I
暂无
中图分类号
TG21 [铸造理论];
学科分类号
080201 ; 080503 ;
摘要
Using both numerical and experimental methods, we studied the effect of coil configuration of pulsed magneto-oscillation(PMO) on distribution of electromagnetic field, flow field and solidification structure with the same pulse current parameters in Al ingots. We designed and constructed three types of coils: surface pulsed magneto-oscillation, hot-top pulsed magneto-oscillation(HPMO) and combined pulsed magneto-oscillation(CPMO). PMO treatment refined the solidification structure in all the ingots. The configuration of the PMO, however, introduced differences in magnetic field intensity, electromagnetic force, Joule heat, flow field, equiaxed grain zone, grain size and growth direction of columnar grains. The largest equiaxed grain zone was found in CPMO treated ingot, and the smallest grain size was found in both HPMO and CPMO treated ingots. Numerical simulation indicated that difference in electromagnetic field and flow field resulted in differences in solidification structure. HPMO is more advantageous over others for large ingot production.
引用
收藏
页码:1334 / 1344
页数:11
相关论文
共 1 条
[1]  
X.L.Liao;Q.J.Zhai;J.Luo;W.J.Chen;Y.Y.Gong; Acta Mater 2007,