Solutions to Nonlocal Integrable Discrete Nonlinear Schr?dinger Equations via Reduction

被引:0
|
作者
胡亚红 [1 ]
陈俊超 [1 ]
机构
[1] Department of Mathematics, Lishui University
基金
中国国家自然科学基金;
关键词
NLS; exp;
D O I
暂无
中图分类号
O175.5 [积分方程];
学科分类号
070104 ;
摘要
Solutions to local and nonlocal integrable discrete nonlinear Schr?dinger(IDNLS) equations are studied via reduction on the bilinear form. It is shown that these solutions to IDNLS equations can be expressed in terms of the single Casorati determinant under different constraint conditions.
引用
收藏
页码:5 / 9
页数:5
相关论文
共 50 条
  • [1] Solutions to Nonlocal Integrable Discrete Nonlinear Schrodinger Equations via Reduction
    Hu, Ya-Hong
    Chen, Jun-Chao
    CHINESE PHYSICS LETTERS, 2018, 35 (11)
  • [2] An Alternative Approach to Integrable Discrete Nonlinear Schrödinger Equations
    Francesco Demontis
    Cornelis van der Mee
    Acta Applicandae Mathematicae, 2013, 127 : 169 - 191
  • [3] INTEGRABLE NONLOCAL NONLINEAR SCHRÖDINGER HIERARCHIES OF TYPE (-?*,?) AND SOLITON SOLUTIONS
    Ma, Wen-xiu
    REPORTS ON MATHEMATICAL PHYSICS, 2023, 92 (01) : 19 - 36
  • [4] Gram determinant solutions to nonlocal integrable discrete nonlinear Schrodinger equations via the pair reduction
    Chen, Junchao
    Feng, Bao-Feng
    Jin, Yongyang
    WAVE MOTION, 2020, 93
  • [5] Solutions and connections of nonlocal derivative nonlinear Schrödinger equations
    Ying Shi
    Shou-Feng Shen
    Song-Lin Zhao
    Nonlinear Dynamics, 2019, 95 : 1257 - 1267
  • [6] Similarity Transformations and Nonlocal Reduced Integrable Nonlinear Schrödinger Type Equations
    Cheng, Li
    Ma, Wen-Xiu
    MATHEMATICS, 2023, 11 (19)
  • [7] Closed form Solutions to the Integrable Discrete Nonlinear Schrödinger Equation
    Francesco Demontis
    Cornelis Van Der Mee
    Journal of Nonlinear Mathematical Physics, 2012, 19 : 136 - 157
  • [8] Infinitely many solutions for the discrete Schrödinger equations with a nonlocal term
    Qilin Xie
    Huafeng Xiao
    Boundary Value Problems, 2022
  • [9] Multibump solutions for discrete periodic nonlinear Schrödinger equations
    Shiwang Ma
    Zhi-Qiang Wang
    Zeitschrift für angewandte Mathematik und Physik, 2013, 64 : 1413 - 1442
  • [10] Quasi-Periodic Solutions to the Nonlocal Nonlinear Schrödinger Equations
    Guan, Liang
    Geng, Xianguo
    Geng, Xue
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (04)