A Brief Study on the Ignition of the Non-Thermal Atmospheric Pressure Plasma Jet from a Double Dielectric Barrier Configured Plasma Pencil

被引:0
|
作者
Asma BEGUM [1 ]
Mounir LAROUSSI [2 ]
M. R. PERVEZ [3 ]
机构
[1] School of Engineering and Computer Science, Independent University,Dhaka, Bangladesh
[2] Department of Electrical and Computer Engineering, Old Dominion University,USA
关键词
plasma jet/bullet; bullet formation; dielectric barrier discharge; non-thermal atmospheric pressure plasma;
D O I
暂无
中图分类号
O53 [等离子体物理学]; O358 [射流];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
To understand the self sustained propagation of the plasma jet/bullet in air under atmospheric pressure, the ignition of the plasma jet/bullet, the plasma jet/bullet ignition point in the plasma pencil, the formation time and the formation criteria from a dielectric barrier configured plasma pencil were investigated in this study. The results were confirmed by comparing these results with the plasma jet ignition process in the plasma pencil without a dielectric barrier. Electrical, optical, and imaging techniques were used to study the formation of the plasma jet from the ignition of discharge in a double dielectric barrier configured plasma pencil. The investigation results show that the plasma jet forms at the outlet of the plasma pencil as a donut shaped discharge front because of the electric field line along the outlet’s surface. It is shown that the required time for the formation of the plasma jet changes with the input voltage of the discharge. The input power calculation for the gap discharge and for the whole system shows that 56% of the average input power is used by the first gap discharge. The estimated electron density inside the gap discharge is in the order of 1011cm-3 . If helium is used as a feeding gas, a minimum 1.48×10-8C charge is required per pulse in the gap discharge to generate a plasma jet.
引用
收藏
页码:627 / 634
页数:8
相关论文
共 50 条
  • [1] A Brief Study on the Ignition of the Non-Thermal Atmospheric Pressure Plasma Jet from a Double Dielectric Barrier Configured Plasma Pencil
    Begum, Asma
    Laroussi, Mounir
    Pervez, M. R.
    PLASMA SCIENCE & TECHNOLOGY, 2013, 15 (07) : 627 - 634
  • [2] Study of Non-thermal Plasma Jet with Dielectric Barrier Configuration in Nitrogen and Argon
    Choo, C. Y.
    Chin, O. H.
    FRONTIERS IN PHYSICS, 2014, 1588 : 191 - 195
  • [3] The effects of non-thermal atmospheric pressure plasma jet on attachment of osteoblast
    Kwon, Jae-Sung
    Kim, Yong Hee
    Choi, Eun Ha
    Kim, Kyoung-Nam
    CURRENT APPLIED PHYSICS, 2013, 13 : S42 - S47
  • [4] The atmospheric pressure air plasma jet with a simple dielectric barrier
    Chen, Longwei
    Wei, Yu
    Zuo, Xiao
    Cong, Jie
    Meng, Yuedong
    THIN SOLID FILMS, 2012, 521 : 226 - 228
  • [5] Non-thermal plasma treatment of contaminated surfaces: remote exposure to atmospheric pressure dielectric barrier discharge effluent
    Limam, Soukayna
    Kirkpatrick, Michael
    Odic, Emmanuel
    ADVANCES IN INNOVATIVE MATERIALS AND APPLICATIONS, 2011, 324 : 469 - 472
  • [6] Electrical and optical characteristics of cylindrical non-thermal atmospheric-pressure dielectric barrier discharge plasma sources
    Wu, Yui Lun
    Hong, Jungmi
    Ouyang, Zihao
    Cho, Tae S.
    Ruzic, D. N.
    SURFACE & COATINGS TECHNOLOGY, 2013, 234 : 100 - 103
  • [7] On the Interaction of Non-Thermal Atmospheric Pressure Plasma with Tissues
    Kalghatgi, S.
    Kelly, C.
    Cerchar, E.
    Sensenig, R.
    Brooks, A.
    Fridman, A.
    Morss-Clyne, A.
    Azizkhan-Clifford, J.
    Friedman, G.
    2009 IEEE PULSED POWER CONFERENCE, VOLS 1 AND 2, 2009, : 1130 - 1135
  • [8] Influence of Non-Thermal Atmospheric Pressure Plasma Jet on Extracellular Activity of α-Amylase in Aspergillus oryzae
    Veerana, Mayura
    Choi, Eun Ha
    Park, Gyungsoon
    APPLIED SCIENCES-BASEL, 2021, 11 (02): : 1 - 14
  • [9] NON-THERMAL PLASMA AT ATMOSPHERIC PRESSURE AND ITS OPPORTUNITIES FOR APPLICATIONS
    Akishev, Yu. S.
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII KHIMIYA I KHIMICHESKAYA TEKHNOLOGIYA, 2019, 62 (08): : 26 - 60
  • [10] Vaporization of bulk metals into single-digit nanoparticles by non-thermal plasma filaments in atmospheric pressure dielectric barrier discharges
    Borra, J. -P.
    Jidenko, N.
    Hou, J.
    Weber, A.
    JOURNAL OF AEROSOL SCIENCE, 2015, 79 : 109 - 125