Global Well-posedness of Generalized Magnetohydrodynamics Equations in Variable Exponent Fourier–Besov–Morrey Spaces

被引:0
作者
Muhammad Zainul ABIDIN
Jie Cheng CHEN
机构
[1] CollegeofMathematicsandComputerScience,ZhejiangNormalUniversity
关键词
D O I
暂无
中图分类号
O361.3 [磁流体力学]; O175 [微分方程、积分方程];
学科分类号
080103 ; 070104 ;
摘要
A generalized incompressable magnetohydrodynamics system is considered in this paper.Furthermore, results of global well-posednenss are established with the aid of Littlewood–Paley decomposition and Fourier localization method in mentioned system with small initial condition in the variable exponent Fourier–Besov–Morrey spaces. Moreover, the Gevrey class regularity of the solution is also achieved in this paper.
引用
收藏
页码:2187 / 2198
页数:12
相关论文
共 50 条
[21]   GLOBAL WELL-POSEDNESS AND DECAY RESULTS FOR 3D GENERALIZED MAGNETO-HYDRODYNAMIC EQUATIONS IN CRITICAL FOURIER-BESOV-MORREY SPACES [J].
EL Baraka, Azzeddine ;
Toumlilin, Mohamed .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
[22]   Semigroup characterization of Besov type Morrey spaces and well-posedness of generalized Navier-Stokes equations [J].
Lin, Chin-Cheng ;
Yang, Qixiang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (02) :804-846
[23]   Global well-posedness of inviscid lake equations in the Besov spaces [J].
Li, Yatao ;
Liu, Jitao ;
Wu, Yanxia .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (16) :9545-9559
[24]   Well-posedness, analyticity and time decay of the 3D fractional magneto-hydrodynamics equations in critical Fourier-Besov-Morrey spaces with variable exponent [J].
Achraf Azanzal ;
Chakir Allalou ;
Said Melliani .
Journal of Elliptic and Parabolic Equations, 2022, 8 :723-742
[25]   Well-posedness, analyticity and time decay of the 3D fractional magneto-hydrodynamics equations in critical Fourier-Besov-Morrey spaces with variable exponent [J].
Azanzal, Achraf ;
Allalou, Chakir ;
Melliani, Said .
JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2022, 8 (02) :723-742
[26]   Well-posedness and stability of solutions for the 3-D generalized micropolar system in Fourier–Besov–Morrey spaces [J].
Halima Srhiri ;
Fatima Ouidirne ;
Chakir Allalou ;
Khalid Hilal .
Journal of Elliptic and Parabolic Equations, 2023, 9 :725-755
[27]   Well-posedness for the 3-D generalized micropolar system in critical Fourier-Besov-Morrey spaces [J].
Gao, Peng ;
Yuan, Baoquan ;
Zhai, Tiantian .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2025,
[28]   Well-Posedness of the Keller-Segel System in Fourier-Besov-Morrey Spaces [J].
Chen, Xiaoli .
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2018, 37 (04) :417-433
[29]   Well-posedness and decay rates for 3D generalized rotating MHD equations in critical Fourier-Besov-Morrey spaces [J].
Yuan, Baoquan ;
Liu, Tiantian .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2025, 76 (02)
[30]   Global well-posedness of the incompressible fractional Navier-Stokes equations in Fourier-Besov spaces with variable exponents [J].
Ru, Shaolei ;
Abidin, Muhammad Zainul .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (04) :1082-1090