FIXED-POINT CONTINUATION APPLIED TO COMPRESSED SENSING:IMPLEMENTATION AND NUMERICAL EXPERIMENTS

被引:0
作者
Elaine T.Hale
机构
[1] DepartmentofComputationalandAppliedMathematicsRiceUniversity
关键词
e1; regularization; Fixed-point algorithm; Continuation; Compressed sensing; Numerical experiments;
D O I
暂无
中图分类号
O241 [数值分析];
学科分类号
070102 ;
摘要
<正> Fixed-point continuation (FPC) is an approach,based on operator-splitting and continuation,for solving minimization problems with e1-regularization:min||x||1 +μf(x).We investigate the application of this algorithm to compressed sensing signal recovery,inwhich f(x) = 1/2||Ax-b||M2,A ∈Rm×n and m≤n.In particular,we extend the originalalgorithm to obtain better practical results,derive appropriate choices for M and μ under agiven measurement model,and present numerical results for a variety of compressed sensingproblems.The numerical results show that the performance of our algorithm comparesfavorably with that of several recently proposed algorithms.
引用
收藏
页码:170 / 194
页数:25
相关论文
共 28 条
[1]   Accelerated Projected Gradient Method for Linear Inverse Problems with Sparsity Constraints [J].
Ingrid Daubechies ;
Massimo Fornasier ;
Ignace Loris .
Journal of Fourier Analysis and Applications, 2008, 14 :764-792
[2]  
Iterative Thresholding for Sparse Approximations[J] . Thomas Blumensath,Mike E. Davies. Journal of Fourier Analysis and Applications . 2008 (5)
[3]   PATHWISE COORDINATE OPTIMIZATION [J].
Friedman, Jerome ;
Hastie, Trevor ;
Hoefling, Holger ;
Tibshirani, Robert .
ANNALS OF APPLIED STATISTICS, 2007, 1 (02) :302-332
[4]   A coordinate gradient descent method for nonsmooth separable minimization [J].
Paul Tseng ;
Sangwoon Yun .
Mathematical Programming, 2009, 117 :387-423
[5]   Quantitative robust uncertainty principles and optimally sparse decompositions [J].
Candès, Emmanuel J. ;
Romberg, Justin .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2006, 6 (02) :227-254
[6]  
Extensions of compressed sensing[J] . Yaakov Tsaig,David L. Donoho. Signal Processing . 2005 (3)
[7]   Projected Barzilai-Borwein methods for large-scale box-constrained quadratic programming [J].
Dai, YH ;
Fletcher, R .
NUMERISCHE MATHEMATIK, 2005, 100 (01) :21-47
[8]   An iterative thresholding algorithm for linear inverse problems with a sparsity constraint [J].
Daubechies, I ;
Defrise, M ;
De Mol, C .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (11) :1413-1457
[9]  
Least Angle Regression[J] . Bradley Efron,Trevor Hastie,Iain Johnstone,Robert Tibshirani. The Annals of Statistics . 2004 (2)
[10]  
An Algorithm for Total Variation Minimization and Applications.[J] . Antonin Chambolle. Journal of Mathematical Imaging and Vision . 2004 (1-2)