An experimental setup of acquiring the coaxial visual image of the molten pool and keyhole in high power Nd:YAG laser welding is introduced in this paper. It is one of the most difficult problems in acquiring coaxial image that the coaxial imaging signal of molten pool and keyhole must be separated from the laser beam with high power. This problem was resolved by designing a dichroitic spectroscope. The characteristics of imaging signal were analyzed and the coaxial image of molten pool and keyhole was acquired. A smoothing filter and a homomorphic filter were designed to remove the low frequency noise and to enhance the image according to the characteristics of imaging signal. At last, edges of molten pool and keyhole were detected and extracted based on image segmentation with threshold.
引用
收藏
页码:51 / 55
页数:5
相关论文
共 1 条
[1]
In-process monitoring in laser welding of automotive parts. Miyamoto I. Proceedings of SPIE the International Society for Optical Engineering . 1993