Congruences for the class numbers of real cyclic sextic number fields

被引:0
作者
刘通
机构
基金
中国国家自然科学基金;
关键词
real cyclic sextic number field; class number; p-adic L-function;
D O I
暂无
中图分类号
O156 [数论];
学科分类号
0701 ; 070101 ;
摘要
Let Kbe a real cyclic sextic number field, and K, Kits quadratic and cubic subfield. Let h(L) denote the ideal class number of field L. Seven congruences for h= h(K)/(h(K)h(K)) are obtained. In particular, when the conductor fof Kis a prime p, (mod p), where C is an explicitly given constant, and Bis the Bernoulli number. These results on real cyclic sextic fields are an extension of the results on quadratic and cyclic quartic fields.
引用
收藏
页码:1009 / 1018
页数:10
相关论文
共 3 条
  • [1] Lu,H.W.Congruences for the class number of qudratie fields, Abb.Math. Sem. Univ. Hamburger Arzteblatt . 1982
  • [2] Zhang,X.K.Ten formulae of type Ankeny-Avtin-Chowla for class numbers of general cyclic quartic fields, Science in China, Ser. A . 1988
  • [3] Zhang Xiangke.Congruence of class number of general cyclic cubic number field, J.China Univ. Science and Technology . 1987