Identification of multiple inputs single output errors-in-variables system using cumulant

被引:0
作者
Haihui Long
Jiankang Zhao
机构
[1] ShanghaiKeyLaboratoryofNavigationandLocationBasedServices,ShanghaiJiaoTongUniversity
关键词
parameter estimation; multiple input systems; recur-sive identification; higher-order cumulant; convergence analysis;
D O I
暂无
中图分类号
TN919.3 [数据传输技术];
学科分类号
0810 ; 081001 ;
摘要
A higher-order cumulant-based weighted least square(HOCWLS) and a higher-order cumulant-based iterative least square(HOCILS) are derived for multiple inputs single output(MISO) errors-in-variables(EIV) systems from noisy input/output data. Whether the noises of the input/output of the system are white or colored, the proposed algorithms can be insensitive to these noises and yield unbiased estimates. To realize adaptive parameter estimates, a higher-order cumulant-based recursive least square(HOCRLS) method is also studied. Convergence analysis of the HOCRLS is conducted by using the stochastic process theory and the stochastic martingale theory. It indicates that the parameter estimation error of HOCRLS consistently converges to zero under a generalized persistent excitation condition. The usefulness of the proposed algorithms is assessed through numerical simulations.
引用
收藏
页码:921 / 933
页数:13
相关论文
共 10 条
[1]   Algorithms for recursive/semi-recursive bias-compensating least squares system identification within the errors-in-variables framework [J].
Linden, Jens G. ;
Larkowski, Tomasz ;
Burnham, Keith J. .
INTERNATIONAL JOURNAL OF CONTROL, 2012, 85 (11) :1625-1643
[2]   Maximum likelihood stochastic gradient estimation for Hammerstein systems with colored noise based on the key term separation technique [J].
Li, Junhong ;
Ding, Feng .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (11) :4170-4177
[3]   Unifying some higher-order statistic-based methods for errors-in-variables model identification [J].
Thil, Stephane ;
Zheng, Wei Xing ;
Gilson, Marion ;
Garnier, Hugues .
AUTOMATICA, 2009, 45 (08) :1937-1942
[4]  
Third-order cumulants based methods for continuous-time errors-in-variables model identification[J] . Stéphane Thil,Hugues Garnier,Marion Gilson. Automatica . 2007 (3)
[5]   An improved bias-compensation approach for errors-in-variables model identification [J].
Mahata, Kaushik .
AUTOMATICA, 2007, 43 (08) :1339-1354
[6]   Recursive identification for multivariate errors-in-variables systems [J].
Chen, Han-Fu .
AUTOMATICA, 2007, 43 (07) :1234-1242
[7]   Errors-in-variables methods in system identification [J].
Soderstrom, Torsten .
AUTOMATICA, 2007, 43 (06) :939-958
[8]  
Multi-innovation least squares identification methods based on the auxiliary model for MISO systems[J] . Feng Ding,Huibo Chen,Ming Li. Applied Mathematics and Computation . 2006 (2)
[9]  
Higher moment estimators for linear regression models with errors in the variables[J] . Marcel G. Dagenais,Denyse L. Dagenais. Journal of Econometrics . 1997 (1)
[10]  
Diagnosis techniques for sensor faults of industrial processes .2 SIMANI S,FANTUZZI C,BEGHELLI S. IEEE Transactions on Control Systems Technology . 2000