Uncertainty relations based on Wigner-Yanase skew information

被引:0
|
作者
Xiaofen Huang [1 ]
Tinggui Zhang [1 ]
Naihuan Jing [2 ,3 ]
机构
[1] School of Mathematics and Statistics, Hainan Normal University
[2] Department of Mathematics, Shanghai University
[3] Department of Mathematics, North Carolina State University
基金
中国国家自然科学基金;
关键词
uncertainty relations; skew information; entanglement;
D O I
暂无
中图分类号
O178 [不等式及其他];
学科分类号
摘要
In this paper, we use certain norm inequalities to obtain new uncertain relations based on the Wigner-Yanase skew information. First for an arbitrary finite number of observables we derive an uncertainty relation outperforming previous lower bounds. We then propose new weighted uncertainty relations for two noncompatible observables. Two separable criteria via skew information are also obtained.
引用
收藏
页码:32 / 37
页数:6
相关论文
共 50 条
  • [21] Quantifying correlations via the Wigner-Yanase skew information
    Luo, Shunlong
    Fu, Shuangshuang
    Oh, Choo Hiap
    PHYSICAL REVIEW A, 2012, 85 (03):
  • [22] Measurement-induced nonlocality based on Wigner-Yanase skew information
    Li, Lei
    Wang, Qing-Wen
    Shen, Shu-Qian
    Li, Ming
    EPL, 2016, 114 (01)
  • [23] Tighter sum uncertainty relations via variance and Wigner-Yanase skew information for N incompatible observables
    Zhang, Qing-Hua
    Fei, Shao-Ming
    QUANTUM INFORMATION PROCESSING, 2021, 20 (12)
  • [24] A generalization of Schrodinger's uncertainty relation described by the Wigner-Yanase skew information
    Li, Qian
    Cao, Huai-Xin
    Du, Hong-Ke
    QUANTUM INFORMATION PROCESSING, 2015, 14 (04) : 1513 - 1522
  • [25] Generalized Wigner-Yanase Skew Information And Generalized Fisher Information
    Yanagi, Kenjiro
    Furuichi, Shigeru
    Kuriyama, Ken
    2008 INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY AND ITS APPLICATIONS, VOLS 1-3, 2008, : 455 - +
  • [26] Two generalized Wigner–Yanase skew information and their uncertainty relations
    Zheng-Li Chen
    Li-Li Liang
    Hao-Jing Li
    Wen-Hua Wang
    Quantum Information Processing, 2016, 15 : 5107 - 5118
  • [27] Uncertainty Relations Based on Modified Wigner-Yanase-Dyson Skew Information
    Wu, Zhaoqi
    Zhang, Lin
    Wang, Jianhui
    Li-Jost, Xianqing
    Fei, Shao-Ming
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2020, 59 (03) : 704 - 718
  • [28] Wigner–Yanase skew information-based uncertainty relations for quantum channels
    Qing-Hua Zhang
    Shao-Ming Fei
    The European Physical Journal Plus, 139
  • [29] Generalized Wigner-Yanase skew information and the affiliated inequality
    Yang, Ma-Cheng
    Qiao, Cong-Feng
    PHYSICAL REVIEW A, 2022, 106 (05)
  • [30] Wigner-Yanase skew information as tests for quantum entanglement
    Chen, ZQ
    PHYSICAL REVIEW A, 2005, 71 (05):