On the Stability of the Functional Equation in Matrix β-Normed Spaces

被引:1
作者
Xiuzhong YANG [1 ,2 ]
Guannan SHEN [1 ]
Guofen LIU [1 ,2 ]
机构
[1] College of Mathematics and Information Science, Hebei Normal University
[2] Hebei Key Laboratory of Computational Mathematics and Applications
基金
中国国家自然科学基金;
关键词
matrix β-normed spaces; stability; additive-quadratic functional equation; Pexider equation;
D O I
暂无
中图分类号
O177 [泛函分析];
学科分类号
070104 ;
摘要
In this paper we introduce the matrix β-normed space and study the stability of the additive-quadratic type functional equation and the Pexider type functional equation in this type of spaces.
引用
收藏
页码:328 / 340
页数:13
相关论文
共 12 条
  • [1] On the stability of the linear functional equation in a single variable on complete metric groups
    Jung, Soon-Mo
    Popa, Dorian
    Rassias, Michael Th
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2014, 59 (01) : 165 - 171
  • [2] Hyers-Ulam stability of functional equations in matrix normed spaces[J] . Jung Rye Lee,Dong Yun Shin,Choonkil Park.Journal of Inequalities and Applications . 2013 (1)
  • [3] Solution and Stability of a General Mixed Type Cubic and Quartic Functional Equation[J] . Xiaopeng Zhao,Xiuzhong Yang,Chin-Tzong Pang,Jinlu Li.Journal of Function Spaces and Applications . 2013
  • [4] On the stability of an n -dimensional cubic functional equation[J] . Hahng-Yun Chu,Dong Seung Kang.Journal of Mathematical Analysis and Applications . 2006 (1)
  • [5] On a bi-quadratic functional equation and its stability
    Park, WG
    Bae, JH
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 62 (04) : 643 - 654
  • [6] Stability of a functional equation deriving from cubic and quadratic functions
    Chang, IS
    Jung, YS
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 283 (02) : 491 - 500
  • [7] On Hyers–Ulam–Rassias Stability of the Pexider Equation[J] . Kil-Woung Jun,Dong-Soo Shin,Byung-Do Kim.Journal of Mathematical Analysis and Applications . 1999 (1)
  • [8] On the Hyers–Ulam Stability of the Functional Equations That Have the Quadratic Property[J] . Soon-Mo Jung.Journal of Mathematical Analysis and Applications . 1998 (1)
  • [9] Remarks on the stability of functional equations[J] . Piotr W. Cholewa.Aequationes Mathematicae . 1984 (1)
  • [10] Proprieta’ locali e approssimazione di operatori[J] . Fulvia Skof.Rendiconti del Seminario Matematico e Fisico di Milano . 1983 (1)