The problem of complementary cycles in tournaments and bipartite tournaments was completely solved. However, the problem of complementary cycles in semicomplete n-partite digraphs with n ≥ 3 is still open. Based on the definition of componentwise complementary cycles, we get the following result. Let D be a 2-strong n-partite (n ≥ 6) tournament that is not a tournament. Let C be a 3-cycle of D and D \ V (C) be nonstrong. For the unique acyclic sequence D1, D2, ··· , Dα of D \V (C), where α≥ 2, let Dc = {Di|Di contains cycles, i = 1, 2, ··· , α}, Dc = {D1, D2, ··· , Dα} \ Dc. If Dc ≠ , then D contains a pair of componentwise complementary cycles.