Metric distortion in the geometric Schottky problem

被引:0
作者
Lizhen Ji
机构
[1] DepartmentofMathematics,UniversityofMichigan
关键词
metric distortion; Schottky problem; noncompact metric space;
D O I
暂无
中图分类号
O186.12 [黎曼几何];
学科分类号
070104 ;
摘要
The classical Schottky problem is concerned with characterization of Jacobian varieties of compact Riemann surfaces among all abelian varieties, or the identification of the Jacobian locus J(Mg) in the moduli space Ag of principally polarized abelian varieties as an algebraic subvariety. By viewing Ag as a noncompact metric space coming from its structure as a locally symmetric space and J(Mg) as a metric subspace, we compare the subspace metric d and the induced length metric ? on J(Mg). Consequently, we clarify the nature of the metric distortion of the subspace J(Mg) and hence settle a problem posed by Farb(2006) on the metric distortion of J(Mg) inside Ag in a certain sense(see Theorem 1.5 and Corollary 1.6).
引用
收藏
页码:2211 / 2228
页数:18
相关论文
共 10 条
[1]  
Reduction theory for mapping class groups and applications to moduli spaces[J] . Enrico Leuzinger.Journal für die reine und angewandte Mathematik (Crelles Journal) . 2010 (649)
[2]   THE ASYMPTOTIC SCHOTTKY PROBLEM [J].
Ji, Lizhen ;
Leuzinger, Enrico .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2010, 19 (06) :1693-1712
[3]  
Ueber specielle Abelsche Functionen vierten Ranges[J] . F. Schottky.Journal für die reine und angewandte Mathematik (Crelle’s Journal) . 2009 (103)
[4]   Geometry of compactifications of locally symmetric spaces [J].
Ji, L ;
MacPherson, R .
ANNALES DE L INSTITUT FOURIER, 2002, 52 (02) :457-+
[5]   Asymptotic geometry of arithmetic quotients of symmetric spaces [J].
Hattori, T .
MATHEMATISCHE ZEITSCHRIFT, 1996, 222 (02) :247-277
[6]   THE HYPERBOLIC METRIC AND THE GEOMETRY OF THE UNIVERSAL CURVE [J].
WOLPERT, SA .
JOURNAL OF DIFFERENTIAL GEOMETRY, 1990, 31 (02) :417-472
[7]   CHARACTERIZATION OF JACOBIAN VARIETIES IN TERMS OF SOLITON-EQUATIONS [J].
SHIOTA, T .
INVENTIONES MATHEMATICAE, 1986, 83 (02) :333-382
[8]  
Riemann surfaces and the theta function[J] . Joseph Lewittes.Acta Mathematica . 1964 (1)
[9]   ON THE MODULI OF JACOBIAN VARIETIES [J].
BAILY, WL .
ANNALS OF MATHEMATICS, 1960, 71 (02) :303-314
[10]  
über die Moduln der Thetafunctionen[J] . F. Schottky.Acta Mathematica . 1903 (1)