Variable 2-Microlocal Besov–Triebel–Lizorkin-Type Spaces

被引:0
作者
Su Qing WU [1 ]
Da Chun YANG [1 ]
Wen YUAN [1 ]
Ci Qiang ZHUO [2 ]
机构
[1] Laboratory of Mathematics and Complex Systems (Ministry of Education), School of Mathematical Sciences, Beijing Normal University
[2] Key Laboratory of High Performance Computing and Stochastic Information Processing (HPCSIP) (Ministry of Education of China), College of Mathematics and Computer Science, Hu’nan Normal University
基金
中国国家自然科学基金;
关键词
2-Microlocal Besov space; 2-Microlocal Triebel–Lizorkin space; variable exponent; φ-transform; Peetre maximal function; difference; atom; embedding;
D O I
暂无
中图分类号
O174 [函数论];
学科分类号
070104 ;
摘要
This article is devoted to the study of variable 2-microlocal Besov-type and Triebel–Lizorkin-type spaces. These variable function spaces are defined via a Fourier-analytical approach. The authors then characterize these spaces by means of φ-transforms, Peetre maximal functions, smooth atoms, ball means of differences and approximations by analytic functions. As applications, some related Sobolev-type embeddings and trace theorems of these spaces are also established. Moreover, some obtained results, such as characterizations via approximations by analytic functions, are new even for the classical variable Besov and Triebel–Lizorkin spaces.
引用
收藏
页码:699 / 748
页数:50
相关论文
共 26 条
  • [1] Characterization of variable Besov-type spaces by ball means of differences
    Drihem, Douadi
    [J]. KYOTO JOURNAL OF MATHEMATICS, 2016, 56 (03) : 655 - 680
  • [2] On 2-microlocal spaces with all exponents variable[J] . Alexandre Almeida,António Caetano.Nonlinear Analysis . 2016
  • [3] TRIEBEL-LIZORKIN TYPE SPACES WITH VARIABLE EXPONENTS
    Yang, Dachun
    Zhuo, Ciqiang
    Yuan, Wen
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2015, 9 (04) : 146 - 202
  • [4] Global gradient estimates for the p ( ? ) -Laplacian[J] . L. Diening,S. Schwarzacher.Nonlinear Analysis . 2014
  • [5] On trace spaces of 2‐microlocal Besov spaces with variable integrability[J] . Susana D. Moura,Júlio S. Neves,Cornelia Schneider.Math. Nachr. . 2013 (11‐)
  • [6] A note on the spaces of variable integrability and summability of Almeida and H?st?[J] . Henning Kempka,Jan Vyb&iacute,ral.Proceedings of the American Mathematical Society . 2013 (9)
  • [7] Critical variable exponent functionals in image restoration
    Harjulehto, P.
    Hasto, P.
    Latvala, V.
    Toivanen, O.
    [J]. APPLIED MATHEMATICS LETTERS, 2013, 26 (01) : 56 - 60
  • [8] Spaces of Variable Smoothness and Integrability: Characterizations by Local Means and Ball Means of Differences[J] . Henning Kempka,Jan Vybíral.Journal of Fourier Analysis and Applications . 2012 (4)
  • [9] Hardy spaces with variable exponents and generalized Campanato spaces
    Nakai, Eiichi
    Sawano, Yoshihiro
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (09) : 3665 - 3748
  • [10] Continuous Characterizations of Besov-Lizorkin-Triebel Spaces and New Interpretations as Coorbits[J] . Tino Ullrich,Hans Triebel.Journal of Function Spaces and Applications . 2012