Edge-enriched N, S co-doped hierarchical porous carbon for oxygen reduction reaction

被引:0
|
作者
Fangfang Chang [1 ,2 ]
Panpan Su [1 ]
Utsab Guharoy [1 ]
Runping Ye [1 ]
Yanfu Ma [1 ]
Huajun Zheng [3 ]
Yi Jia [3 ]
Jian Liu [1 ,4 ]
机构
[1] State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences
[2] University of Chinese Academy of Sciences
[3] Department of Applied Chemistry and Zhejiang Carbon Neutral Innovation Institute, Zhejiang University of Technology
[4] DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, University of Surrey
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
O643.36 [催化剂]; TM911.4 [燃料电池];
学科分类号
摘要
The development of carbon materials with high electrochemical performance for next-generation energy device is emerging, especially N, S co-doped carbon materials have sparked intensive attention. However,the exploration of N, S co-doped carbon with well-defined active sites and hierarchical porous structures are still limited. In this study, we prepared a series of edge-enriched N, S co-doped carbon materials through pyrolysis of thiourea(TU) encapsulated in zeolitic imidazolate frameworks(TU@ZIF) composites,which delivered very good oxygen reduction reaction(ORR) performance in alkaline medium with onset potential of 0.94 V vs. reversible hydrogen electrode(RHE), good stability and methanol tolerance. Density functional theory(DFT) calculations suggested that carbon atoms adjacent to N and S are probable active sites for ORR intermediates in edge-enriched N, S co-doped carbon materials because higher electron density can enhance O2adsorption, lower formation barriers of intermediates, improving the ORR performance comparing to intact N, S co-doped carbon materials. This study might provide a new pathway for improving ORR activity by the integration engineering of edge sites, and electronic structure of heteroatom doped carbon electrocatalysts.
引用
收藏
页码:381 / 386
页数:6
相关论文
共 50 条
  • [21] Chrysanthemum-derived N and S co-doped porous carbon for efficient oxygen reduction reaction and aluminum-air battery
    Xu, Lina
    Fan, Hao
    Huang, Lixin
    Xia, Jianling
    Li, Shouhai
    Li, Mei
    Ding, Haiyang
    Huang, Kun
    ELECTROCHIMICA ACTA, 2017, 239 : 1 - 9
  • [22] Zn/N/S Co-doped hierarchical porous carbon as a high-efficiency oxygen reduction catalyst in Zn-air batteries
    Liu, Mincong
    Zhang, Jing
    Ye, Guohua
    Peng, Yan
    Guan, Shiyou
    DALTON TRANSACTIONS, 2023, 52 (45) : 16773 - 16779
  • [23] Co nanoparticles embedded N-doped hierarchical porous carbon matrix as an efficient electrocatalyst for oxygen reduction reaction
    Liu, Xiaoming
    Zhang, Wendi
    Liu, Xuan-He
    Li, Kuangjun
    Zhang, Xing
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2022, 906
  • [24] Design of Fe and Cu bimetallic integration on N and F co-doped porous carbon material for oxygen reduction reaction
    Liu, Siyan
    Yang, Huitian
    Yao, Lei
    Peng, Hongliang
    Huang, Pengru
    Lin, Xiangcheng
    Liu, Lihua
    Zhang, Huanzhi
    Cai, Ping
    Wen, Xin
    Zou, Yongjin
    Xiang, Cuili
    Xu, Fen
    Sun, Lixian
    Kannan, Palanisamy
    Ji, Shan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (12) : 7751 - 7760
  • [25] Sepia-Derived N, P Co-doped Porous Carbon Spheres as Oxygen Reduction Reaction Electrocatalyst and Supercapacitor
    Ren, Guangyuan
    Li, Yunan
    Chen, Quanshui
    Qian, Yong
    Zheng, Jugong
    Zhu, Yean
    Teng, Chao
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (12): : 16032 - 16038
  • [26] ZnS, Fe, and P co-doped N enriched carbon derived from MOFs as efficient electrocatalyst for oxygen reduction reaction
    Zhao, Liping
    Wang, Anqi
    Yang, Ailin
    Zuo, Guihong
    Dai, Jun
    Zheng, Youjin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (56) : 31863 - 31870
  • [27] Fe/N/S Co-doped Porous Carbon from the Co-processing Residue of Coal and Heavy Oil for an Efficient Oxygen Reduction Reaction
    Li, Chuan
    Di, Haoping
    Yang, Tengfei
    Huang, Tianxiang
    Deng, Wenan
    Du, Feng
    Luo, Hui
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2023, 62 (06) : 2536 - 2547
  • [28] Co and N co-doped porous carbon derived from corn stalk core as electrocatalyst for oxygen reduction reaction in alkaline medium
    Fan, Liquan
    Su, Xinyu
    Cong, Tao
    Wang, Yuwei
    Liu, Chaojun
    Xiong, Yueping
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2020, 15 (12): : 11723 - 11731
  • [29] A new strategy to access Co/N co-doped carbon nanotubes as oxygen reduction reaction catalysts
    Liu, Bingshuai
    Zhou, Huang
    Jin, Huihui
    Zhu, Jiawei
    Wang, Zhe
    Hu, Chenxi
    Liang, Lvhan
    Mu, Shichun
    He, Daping
    CHINESE CHEMICAL LETTERS, 2021, 32 (01) : 535 - 538
  • [30] Co/N Co-doped Carbon Nanotube/Graphene Composites as Efficient Electrocatalysts for Oxygen Reduction Reaction
    Di Muxin
    Xiao Guozheng
    Huang Peng
    Cao Yihuan
    Zhu Ying
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2018, 39 (02): : 343 - 350