Structure of solvable subgroup of SL(2,C) and integrability of Fuchsian equations on torus T2

被引:0
|
作者
管克英
张绍飞
机构
[1] Beijing University of Aeronautics and Astronautics
[2] China
[3] Beijing 100083
[4] Department of Applied Mathematics and Physics
基金
中国国家自然科学基金;
关键词
Fnchsian equation; monodromy group; special linear group; solvable group; integrability;
D O I
暂无
中图分类号
O152 [群论];
学科分类号
070104 ;
摘要
The possible derived lengths and structures of solvable subgroups of SL(2,C) are given in Theorem 1,and the structures of the Riemann surfaces of solutions of the Fuchsian equation on torus with a solvable monodromy group are discussed.Examples in verifying the solvability of monodromy groups for some Fuchsian equations on T2 are given.
引用
收藏
页码:501 / 508
页数:8
相关论文
共 50 条
  • [1] Structure of solvable subgroup of SL(2,C) and integrability of Fuchsian equations on torus T-2
    Guan, KY
    Zhang, SF
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1996, 39 (05): : 501 - 508
  • [2] Integrability of second-order Fuchsian equation on Torus T~2
    马玲
    杨朝霞
    管克英
    ChineseScienceBulletin, 1996, (07) : 534 - 538
  • [3] Integrability of second-order fuchsian equation on torus T-2
    Ma, L
    Yang, ZX
    Guan, KY
    CHINESE SCIENCE BULLETIN, 1996, 41 (07): : 534 - 538
  • [4] BIFURCATION OF A TORUS T2 INTO A TORUS T3
    CHENCINER, A
    IOOSS, G
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 284 (19): : 1207 - 1210
  • [5] Classification of rotations on the torus T2
    Bedaride, Nicolas
    THEORETICAL COMPUTER SCIENCE, 2007, 385 (1-3) : 214 - 225
  • [6] A local wavelet transform on the torus T2
    Wang, Bao Qin
    Wang, Gang
    Zhou, Xiao-Hui
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2015, 13 (04)
  • [7] On SL(2, C)-representations of torus knot groups
    Mira-Albanes, Jhon Jader
    Rodriguez-Nieto, Jose Gregorio
    Salazar-Diaz, Olga Patricia
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2023, 17 (02): : 615 - 637
  • [8] The SL(2, C)-Character Varieties of Torus Knots
    Munoz, Vicente
    REVISTA MATEMATICA COMPLUTENSE, 2009, 22 (02): : 489 - 497
  • [9] IRREDUCIBLE REPRESENTATIONS OF THE CENTRAL EXTENSION OF SL(2) OR T2
    HUGHES, JWB
    JOURNAL OF MATHEMATICAL PHYSICS, 1981, 22 (12) : 2775 - 2779
  • [10] Non-integrability of dominated splitting on T2
    He, Baolin
    Gan, Shaobo
    NONLINEARITY, 2014, 27 (12) : 3179 - 3184