Global Well-posedness for the Fifth-order mKdV Equation

被引:0
|
作者
Xin Jun GAO [1 ]
机构
[1] Department of Mathematical Sciences, University of Science and Technology of China
关键词
Fifth-order mKdV equation; Bourgain space; global well-posedness; I-method;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
We prove the global well-posedness for the Cauchy problem of fifth-order modified Korteweg–de Vries equation in Sobolev spaces H~s(R) for s>-(3/(22)).The main approach is the"I-method"together with the multilinear multiplier analysis.
引用
收藏
页码:1015 / 1027
页数:13
相关论文
共 50 条
  • [21] Global well-posedness for the derivative nonlinear Schrodinger equation
    Bahouri, Hajer
    Perelman, Galina
    INVENTIONES MATHEMATICAE, 2022, 229 (02) : 639 - 688
  • [22] GLOBAL WELL-POSEDNESS ON THE DERIVATIVE NONLINEAR SCHRODINGER EQUATION
    Wu, Yifei
    ANALYSIS & PDE, 2015, 8 (05): : 1101 - 1112
  • [23] Global Well-Posedness for the Fractional Nonlinear Schrodinger Equation
    Guo, Boling
    Huo, Zhaohui
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (02) : 247 - 255
  • [24] Global well-posedness for the derivative nonlinear Schrödinger equation
    Hajer Bahouri
    Galina Perelman
    Inventiones mathematicae, 2022, 229 : 639 - 688
  • [25] Global well-posedness of critical surface quasigeostrophic equation on the sphere
    Alonso-Oran, Diego
    Cordoba, Antonio
    Martinez, Angel D.
    ADVANCES IN MATHEMATICS, 2018, 328 : 248 - 263
  • [26] Global well-posedness of a binary-ternary Boltzmann equation
    Ampatzoglou, Ioakeim
    Gamba, Irene M.
    Pavlovic, Natasa
    Taskovic, Maja
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2022, 39 (02): : 327 - 369
  • [27] Well-posedness of the fifth order Kadomtsev-Petviashvili I equation in anisotropic Sobolev spaces with nonnegative indices
    Li, Junfeng
    Xiao, Jie
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2008, 90 (04): : 338 - 352
  • [28] Global Well-Posedness for the Periodic Generalized Korteweg-De Vries Equation
    Bao, Jiguang
    Wu, Yifei
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2017, 66 (05) : 1797 - 1825
  • [29] Global well-posedness and scattering for the nonstandard defocusing Beam equation
    Wang, Dawei
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 89 : 8 - 23
  • [30] Global Well-posedness and Global Attractor for Two-dimensional Zakharov-Kuznetsov Equation
    Shan, Min Jie
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2020, 36 (09) : 969 - 1000