Error Estimates for Mixed Finite Element Methods for Sobolev Equation

被引:31
作者
姜子文
陈焕祯
机构
关键词
error estimate; mixed finite element; Sobolev equation;
D O I
10.13447/j.1674-5647.2001.03.009
中图分类号
O241.82 [偏微分方程的数值解法];
学科分类号
070102 ;
摘要
The purpose of this paper is to investigate the convergence of the mixed finite element method for the initial-boundary value problem for the Sobolev equation Ut-div{aut + b1 u} = f based on the Raviart-Thomas space Vh × Wh H(div; × L2(). Optimal order estimates are obtained for the approximation of u, ut, the associated velocity p and divp respectively in L(0,T;L2()), L(0,T;L2()), L(0,T;L2()2), and L2(0, T; L2()). Quasi-optimal order estimates are obtained for the approximations of u, ut in L(0, T; L()) and p in L(0,T; L()2).
引用
收藏
页码:301 / 314
页数:14
相关论文
共 2 条
[1]  
Asymptotic expansions and L ∞ -error estimates for mixed finite element methods for second order elliptic problems[J] . Junping Wang.Numerische Mathematik . 1989 (4)
[2]  
Optimal L ∞ -estimates for a mixed finite element method for second order elliptic and parabolic problems[J] . R. Scholz.Calcolo . 1984 (3)