共 15 条
Adsorption of K~+ from an aqueous phase onto an activated carbon used as an electric double-layer capacitor electrode
被引:0
作者:
LI Ying
机构:
基金:
高等学校博士学科点专项科研基金;
关键词:
activated carbon;
adsorption isotherm;
adsorption kinetics;
electric double-layer capacitor;
D O I:
暂无
中图分类号:
TM53 [电容器];
学科分类号:
080801 ;
摘要:
The adsorption capacity and absorption rate for electrolyte onto activated carbon are important parameters used to characterize activated carbon electric double-layer capacitor electrodes. In this paper the pore structure of typical commercial activated carbons, and various Mn-doped activated carbons prepared on a laboratory scale, are described. The pore structure was character-ized by N2 adsorption/desorption isotherms. Isotherms for K+ adsorption onto these activated carbons from the aqueous phase were also obtained. The experimental, equilibrium K+ adsorption data were fitted to the Langmuir, Freundlich or Temkin equations. Adsorption of K+ onto the activated carbons was measured and plotted as a function of time. The adsorption kinetic data were modeled by either pseudo-first or pseudo-second order equations. The Elvoich equation, a liquid film diffusion and an intra-particle diffusion model were used to fit the kinetic data. The results indicate that the adsorption of K+ onto activated carbon is influenced by many factors including pore size distribution, specific surface area and the surface chemistry of the activated carbons. The Temkin equation best describes the equilibrium adsorption data. The pseudo-second order model exactly describes the whole adsorption process, which is controlled by both liquid film and intra-particle diffusion.
引用
收藏
页码:551 / 556
页数:6
相关论文