Efficient second harmonic generation in silicon covered lithium niobate waveguides

被引:1
|
作者
方彬 [1 ,2 ]
高盛伦 [1 ,2 ]
王志章 [1 ,2 ]
祝世宁 [1 ,2 ]
李涛 [1 ,2 ]
机构
[1] National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University
[2] Collaborative Innovation Center of Advanced Microstructures
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
lithium niobate; hybrid waveguide; modal phase matching; second harmonic generation;
D O I
暂无
中图分类号
TN25 [波导光学与集成光学];
学科分类号
0702 ; 070207 ;
摘要
We theoretically propose a hybrid lithium niobate(LN) thin-film waveguide that consists of an amorphous silicon stripe and etch-free z-cut LN for highly efficient wavelength conversion, circumventing the challenging etching on LN material.Profiting from the spatial symmetry breaking of the waveguide, the asymmetric hybrid modes can spontaneously achieve phase matching with small modal area and large spatial mode overlap, enabling enhanced second harmonic generation with a normalized conversion efficiency over 3900% W-1· cm-2(0.5-mm-long propagation distance). The choice of integrating silicon with LN alleviates the fabrication challenge, making the platform potentially compatible with silicon photonics.
引用
收藏
页码:17 / 21
页数:5
相关论文
共 50 条
  • [1] Efficient second harmonic generation in silicon covered lithium niobate waveguides
    Fang, Bin
    Gao, Shenglun
    Wang, Zhizhang
    Zhu, Shining
    Li, Tao
    CHINESE OPTICS LETTERS, 2021, 19 (06)
  • [2] Efficient second harmonic generation in lithium niobate on insulator waveguides and its pitfalls
    Boes, Andreas
    Chang, Lin
    Nguyen, Thach
    Ren, Guanghui
    Bowers, John
    Mitchell, Arnan
    JOURNAL OF PHYSICS-PHOTONICS, 2021, 3 (01):
  • [3] Design of folded hybrid silicon carbide-lithium niobate waveguides for efficient second-harmonic generation
    Weigel, Peter O.
    Mookherjea, Shayan
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2018, 35 (03) : 593 - 600
  • [4] Efficient Second Harmonic Generation in Lithium Niobate on Insulator
    Moore, Jeremy
    Douglas, J. Kenneth
    Frank, Ian W.
    Friedmann, Thomas A.
    Camacho, Ryan M.
    Eichenfield, Matt
    2016 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2016,
  • [5] Second harmonic generation in self-induced waveguides in lithium niobate
    Pettazzi, Federico
    Coda, V.
    Chauvet, Mathieu
    Fazio, Eugenio
    ROMOPTO 2006: EIGHTH CONFERENCE ON OPTICS, 2007, 6785
  • [6] Second harmonic generation in reverse proton exchanged - Lithium niobate waveguides
    Di Lallo, A
    Cino, A
    Conti, C
    Assanto, G
    OPTICS EXPRESS, 2001, 8 (04): : 232 - 237
  • [7] Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation
    Geiss, Reinhard
    Saravi, Sina
    Sergeyev, Anton
    Diziain, Severine
    Setzpfandt, Frank
    Schrempel, Frank
    Grange, Rachel
    Kley, Ernst-Bernhard
    Tuennermann, Andreas
    Pertsch, Thomas
    OPTICS LETTERS, 2015, 40 (12) : 2715 - 2718
  • [8] Efficient second harmonic generation in femtosecond laser written optical waveguides on periodically poled lithium niobate
    Osellame, Roberto
    Chiodo, Nicola
    Lobino, Mirko
    Marangoni, Marco
    Cerullo, Giulio
    Ramponi, Roberta
    Bookey, Henry T.
    Thomson, Robert R.
    Psaila, Nicholas
    Kar, Ajoy K.
    COMMERCIAL AND BIOMEDICAL APPLICATIONS OF ULTRAFAST LASERS VIII, 2008, 6881
  • [9] Lithium niobate step-index waveguides for broadband second harmonic generation
    De Sande, J. C. G.
    Stivala, S.
    Gonzalo, J.
    Assanto, G.
    JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2006, 15 (02) : 191 - 202
  • [10] Generation of the second harmonic in ridge waveguides formed in periodically poled lithium niobate
    Dudelev, V. V.
    Akhmatkhanov, A. R.
    Greshnyakov, E. D.
    Abdulrazak, S. Kh
    Bugrov, V. E.
    Kognovitskaya, E. A.
    Kuchinskii, V., I
    Shur, V. Ya
    Sokolovskii, G. S.
    QUANTUM ELECTRONICS, 2018, 48 (08) : 717 - 719