Existence of Explosive Solutions for a Class of Nonlinear Elliptic Equations

被引:0
作者
彭亚红
彭小珍
机构
[1] DepartmentofAppliedMathematics,DonghuaUniversity
关键词
nonlinear elliptic equations; explosive supersolutions; explosive subsolutions;
D O I
10.19884/j.1672-5220.2008.06.014
中图分类号
O241.82 [偏微分方程的数值解法];
学科分类号
070102 ;
摘要
By the subsuper solutions method, the explosive supersolutions and explosive subsol utions are obtained and the exsistence of explosive solutions is proved on a bounded domain for a class of nonlinear elliptic problems.Then, the exsitence of an entire large solution is proved by the perturbed method.
引用
收藏
页码:676 / 679
页数:4
相关论文
共 8 条
[1]  
Large solution of a semilinear elliptic problem[J] . Yahong Peng,Ya-Guang Wang.Computers and Mathematics with Applications . 2005 (9)
[2]   A necessary and sufficient condition for existence of large solutions to semilinear elliptic equations [J].
Lair, AV .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 240 (01) :205-218
[3]   ON THE STRUCTURE OF THE CONFORMAL SCALAR CURVATURE EQUATION ON R(N) [J].
CHENG, KS ;
NI, WM .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1992, 41 (01) :261-278
[4]  
‘Large’ solutions of semilinear elliptic equations: Existence, uniqueness and asymptotic behaviour[J] . Catherine Bandle,Moshe Marcus.Journal d’Analyse Mathématique . 1992 (1)
[5]  
Semilinear elliptic equations with uniform blow-up on the boundary[J] . Laurent Veron.Journal d’Analyse Mathématique . 1992 (1)
[6]  
über einige Extremalprobleme im Gebiete der konformen Abbildung[J] . Ludwig Bieberbach.Mathematische Annalen . 1916 (2)
[7]  
Sur les solutions maximales de problemes elliptique non-lineaires .2 Bandle,C.,Marcus,M. C. R. Acad. Sci. Paris . 1990
[8]  
On a problem of Bieberbach and Rademacher .2 Lazer A C,Mckenna P J. Nonlinear Analysis . 1993