Some Applications of Besov Spaces on Fractals

被引:0
作者
Da Chun YANG Department of MathematicsBeijing Normal UniversityBeijing PRChina [100875 ]
机构
关键词
Besov spaces; Fractals; Sobolev spaces; Pseudodifferential operators; Elliptic operators; Eigenvalues;
D O I
暂无
中图分类号
O189 [拓扑(形势几何学)];
学科分类号
070104 ;
摘要
<正> Let Γ be a compact d-set in R~n with 0pqs(Γ)of Triebel and the Sobolevspaces W1,p(Γ,d,μ)of Hajlasz when s>1,1pq0(F)and Fpq0(Γ).
引用
收藏
页码:1209 / 1218
页数:10
相关论文
共 6 条
[1]   INHOMOGENEOUS BESOV AND TRIEBEL-LIZORKING SPACES ON SPACES OF HOMOGENEOUS TYPE [J].
In memory or Professor M. T. Cheng Yongsheng Han (Auburn University ;
USA) Shanzhen Lu and Dachun Yang (Beijing Normal University ;
China) (Lu Shanzhan and Yang Dachun are Supported partially by the SEDF and the NNDf of China) .
ApproximationTheoryandItsApplications, 1999, (03) :37-65
[2]   Some equivalent definitions of high order Sobolev spaces on stratified groups and generalizations to metric spaces [J].
Liu, YP ;
Lu, GZ ;
Wheeden, RL .
MATHEMATISCHE ANNALEN, 2002, 323 (01) :157-174
[3]  
Inhomogeneous discrete calderón reproducing formulas for spaces of homogeneous type[J] . Yongsheng Han,Shanzhen Lu,Dachun Yang.The Journal of Fourier Analysis and Applications . 2001 (6)
[4]   Traces of Sobolev functions on fractal type sets and characterization of extension domains [J].
Hajlasz, P ;
Martio, O .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 143 (01) :221-246
[5]   Sobolev spaces on an arbitrary metric space [J].
Hajlasz, P .
POTENTIAL ANALYSIS, 1996, 5 (04) :403-415
[6]  
Heinonen,J. Lectures on Analysis on Metric Spaces . 2001