Recent developments in aqueous ammonia-based post-combustion CO2 capture technologies

被引:2
|
作者
Hai Yu [1 ]
机构
[1] CSIRO Energy
关键词
Aqueous ammonia; NH3; Post-combustion capture; Ammonia loss; Regeneration energy; Amines;
D O I
暂无
中图分类号
TQ113.6 [氨水(氢氧化铵溶液)的制备]; X701 [废气的处理与利用];
学科分类号
摘要
Aqueous ammonia(NH3) is a promising alternative solvent for the capture of industrial COemissions, given its high chemical stability and COremoval capacity, and low material costs and regeneration energy. NH3 also has potential for capturing multiple flue gas components, including NOx, SOxand CO, and producing value-added chemicals. However, its high volatility and low reactivity towards COlimit its economic viability. Considerable efforts have been made to advance aqueous NH3-based post-combustion capture technologies in the last few years: in particular, General Electric’s chilled NH3 process, CSIRO’s mild-temperature aqueous NH3 process and SRI International’s mixed-salts(NH3 and potassium carbonate) technology. Here, we review these research activities and other developments in the field, and outline future research needed to further improve aqueous NH3-based COcapture technologies.
引用
收藏
页码:2255 / 2265
页数:11
相关论文
共 50 条
  • [1] Recent developments in aqueous ammonia-based post-combustion CO2 capture technologies
    Yu, Hai
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2018, 26 (11) : 2255 - 2265
  • [2] Process design of aqueous ammonia-based post-combustion CO2 capture
    Liu, Jialin
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2017, 78 : 240 - 246
  • [3] Process Design of Aqueous Ammonia-based Post-combustion CO2 Capture
    Liu, Jialin
    Chen, Ding-Sou
    2017 6TH INTERNATIONAL SYMPOSIUM ON ADVANCED CONTROL OF INDUSTRIAL PROCESSES (ADCONIP), 2017, : 377 - 382
  • [4] Technical and economic assessment of ammonia-based post-combustion CO2 capture
    Versteeg, Peter
    Rubin, Edward S.
    10TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, 2011, 4 : 1957 - 1964
  • [5] Advancement of ammonia-based post-combustion CO2 capture technology: Process modifications
    Jiang, Kaiqi
    Yu, Hai
    Yu, Jianglong
    Li, Kangkang
    FUEL PROCESSING TECHNOLOGY, 2020, 210
  • [6] CO2 regenerative battery for energy harvesting from ammonia-based post-combustion CO2 capture
    Li, Kangkang
    Jiang, Kaiqi
    Jones, Timothy W.
    Feron, Paul H. M.
    Bennett, Robert D.
    Hollenkamp, Anthony F.
    APPLIED ENERGY, 2019, 247 : 417 - 425
  • [7] Process analysis of improved process modifications for ammonia-based post-combustion CO2 capture
    Ishaq, Hafsa
    Ali, Usman
    Sher, Farooq
    Anus, Muhammad
    Imran, Muahmmad
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2021, 9 (01):
  • [8] Evaluation of Post-Combustion CO2 Capture Technologies
    Li, Yuan
    Wang, Qimin
    Wang, Peibin
    RESOURCES AND SUSTAINABLE DEVELOPMENT, PTS 1-4, 2013, 734-737 : 1881 - 1886
  • [9] Potassium sarcosinate promoted aqueous ammonia solution for post-combustion capture of CO2
    Yang, Nan
    Xu, Dong Yao
    Yu, Hai
    Conway, William
    Maeder, Marcel
    Feron, Paul
    GREENHOUSE GASES-SCIENCE AND TECHNOLOGY, 2014, 4 (04): : 555 - 567
  • [10] Post-combustion CO2 capture by aqueous ammonia: A state-of-the-art review
    Zhao, Bingtao
    Su, Yaxin
    Tao, Wenwen
    Li, Leilei
    Peng, Yuanchang
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2012, 9 : 355 - 371