Some new Triebel-Lizorkin spaces on spaces of homogeneous type and their frame characterizations

被引:0
作者
YANG Dachun Department of Mathematics
机构
关键词
space of homogeneous type; Plancherel-P(?)lya inequality; Triebel-Lizorkin space; Carleson maximal function; Calderón reproducing formula; para-accretive function; BMO(X);
D O I
暂无
中图分类号
O178 [不等式及其他];
学科分类号
0701 ; 070101 ;
摘要
Let(X,p,μ)d,θ be a space of homogeneous type,(?) ∈(0,θ],|s|<(?) andmax{d/(d+(?)),d/(d+s+(?))}<q≤∞.The author introduces the new Triebel-Lizorkin spaces (?)q(X) and establishes the framecharacterizations of these spaces by first establishing a Plancherel-P(?)lya-type inequalityrelated to the norm of the spaces (?)q(X).The frame characterizations of the Besovspace (?)q(X) with|s|<(?),max{d/(d+(?)),d/(d+s+(?))}<p≤∞ and 0<q≤∞and the Triebel-Lizorkin space (?)q(X)with|s|<(?),max{d/(d+(?)),d/(d+s+(?))}<p<∞ and max{d/(d+(?)),d/(d+s+(?))}<q≤∞ are also presented.Moreover,the au-thor introduces the new TriebeI-Lizorkin spaces b(?)q(X) and H(?)q(X) associated to agiven para-accretive function b.The relation between the space b(?)q(X) and the spaceH(?)q(X) is also presented.The author further proves that if s=0 and q=2,thenH(?)q(X)=(?)q(X),which also gives a new characterization of the space BMO(X),since (?)q(X)=BMO(X).
引用
收藏
页码:12 / 39
页数:28
相关论文
共 4 条
[1]   Some equivalent definitions of high order Sobolev spaces on stratified groups and generalizations to metric spaces [J].
Liu, YP ;
Lu, GZ ;
Wheeden, RL .
MATHEMATISCHE ANNALEN, 2002, 323 (01) :157-174
[2]  
Inhomogeneous discrete calderón reproducing formulas for spaces of homogeneous type[J] . Yongsheng Han,Shanzhen Lu,Dachun Yang.The Journal of Fourier Analysis and Applications . 2001 (6)
[3]   Discrete Calderón-type Reproducing Formula [J].
Yongsheng Han Department of MathematicsAuburn UniversityAuburnAlabama USA .
Acta Mathematica Sinica(English Series), 2000, 16 (02) :277-294
[4]   INHOMOGENEOUS BESOV AND TRIEBEL-LIZORKING SPACES ON SPACES OF HOMOGENEOUS TYPE [J].
In memory or Professor M. T. Cheng Yongsheng Han (Auburn University ;
USA) Shanzhen Lu and Dachun Yang (Beijing Normal University ;
China) (Lu Shanzhan and Yang Dachun are Supported partially by the SEDF and the NNDf of China) .
Approximation Theory and Its Applications, 1999, (03) :37-65