Neighborhood Unions and Hamilton Cycles in Bipartite Graphs

被引:0
|
作者
刘一平
吴正声
张雪荣
机构
关键词
Bipartite Graph; Hamilton Cycle; Neighborhood Union; Equalized Independent Set;
D O I
10.13447/j.1674-5647.1996.01.008
中图分类号
O157.5 [图论];
学科分类号
070104 ;
摘要
NeighborhoodUnionsandHamiltonCyclesinBipartiteGraphsLiuYiping(刘一平);WuZhengsheng(吴正声)(DepartmentofMathematics,NanjingNormalUni...
引用
收藏
页码:46 / 50
页数:5
相关论文
共 50 条
  • [31] Finding Hamilton cycles in random intersection graphs
    Rybarczyk, Katarzyna
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2018, 20 (01):
  • [32] K-factors and Hamilton cycles in graphs
    Wang, Zhi Guo
    Zhao, Zhen Jiang
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (02) : 309 - 312
  • [33] Properties of Hamilton cycles of circuit graphs of matroids
    Fan, Hao
    Liu, Guizhen
    FRONTIERS OF MATHEMATICS IN CHINA, 2013, 8 (04) : 801 - 809
  • [34] FORBIDDEN SUBGRAPHS,DEGREES,NEIGHBORHOOD UNIONS AND CIRCUMFERENCES OF GRAPHS
    田丰
    SystemsScienceandMathematicalSciences, 1991, (04) : 374 - 382
  • [35] Cycles in 2-factors of balanced bipartite graphs
    Chen, GT
    Faudree, RJ
    Gould, RJ
    Jacobson, MS
    Lesniak, L
    GRAPHS AND COMBINATORICS, 2000, 16 (01) : 67 - 80
  • [36] Long Cycles in n-Extendable Bipartite Graphs
    Gan, Zhiyong
    Lou, Dingjun
    ARS COMBINATORIA, 2019, 144 : 91 - 106
  • [37] Cycles in 2-Factors of Balanced Bipartite Graphs
    Guantao Chen
    Ralph J. Faudree
    Ronald J. Gould
    Michael S. Jacobson
    Linda Lesniak
    Graphs and Combinatorics, 2000, 16 : 67 - 80
  • [38] Hamilton cycles in a family of graphs which includes the generalized Petersen graphs
    Dean, Matthew
    ARS COMBINATORIA, 2012, 103 : 205 - 224
  • [39] Hamilton cycles in dense regular digraphs and oriented graphs
    Lo, Allan
    Patel, Viresh
    Yildiz, Mehmet Akif
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2024, 164 : 119 - 160
  • [40] Counting Hamilton cycles in sparse random directed graphs
    Ferber, Asaf
    Kwan, Matthew
    Sudakov, Benny
    RANDOM STRUCTURES & ALGORITHMS, 2018, 53 (04) : 592 - 603