Neighborhood Unions and Hamilton Cycles in Bipartite Graphs

被引:0
|
作者
刘一平
吴正声
张雪荣
机构
关键词
Bipartite Graph; Hamilton Cycle; Neighborhood Union; Equalized Independent Set;
D O I
10.13447/j.1674-5647.1996.01.008
中图分类号
O157.5 [图论];
学科分类号
070104 ;
摘要
NeighborhoodUnionsandHamiltonCyclesinBipartiteGraphsLiuYiping(刘一平);WuZhengsheng(吴正声)(DepartmentofMathematics,NanjingNormalUni...
引用
收藏
页码:46 / 50
页数:5
相关论文
共 50 条
  • [1] The hamiltonicity of bipartite graphs involving neighborhood unions
    Chen, GT
    Saito, A
    Wei, B
    Zhang, XR
    DISCRETE MATHEMATICS, 2002, 249 (1-3) : 45 - 56
  • [2] DIRECTED HAMILTON CYCLES IN DIGRAPHS AND MATCHING ALTERNATING HAMILTON CYCLES IN BIPARTITE GRAPHS
    Zhang, Zan-Bo
    Zhang, Xiaoyan
    Wen, Xuelian
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (01) : 274 - 289
  • [3] Hamilton Cycles in n-Extendable Bipartite Graphs
    Li, Yueping
    Lou, Dingjun
    ARS COMBINATORIA, 2018, 139 : 3 - 18
  • [4] Multiple Hamilton cycles in bipartite cubic graphs: An algebraic method
    Alahmadi, Adel N.
    Glynn, David G.
    FINITE FIELDS AND THEIR APPLICATIONS, 2017, 44 : 18 - 21
  • [5] Lower bounds of length of longest cycles in graphs involving neighborhood unions
    Liu, X
    DISCRETE MATHEMATICS, 1997, 169 (1-3) : 133 - 144
  • [6] Neighborhood unions and regularity in graphs
    Favaron, O
    Redouane, Y
    THEORETICAL COMPUTER SCIENCE, 2001, 263 (1-2) : 247 - 254
  • [7] Hamilton cycles in pseudorandom graphs
    Glock, Stefan
    Correia, David Munha
    Sudakov, Benny
    ADVANCES IN MATHEMATICS, 2024, 458
  • [8] Neighborhood conditions for balanced independent sets in bipartite graphs
    Amar, D
    Brandt, S
    Brito, D
    Ordaz, O
    DISCRETE MATHEMATICS, 1998, 181 (1-3) : 31 - 36
  • [9] Hamilton Cycles, Minimum Degree, and Bipartite Holes
    McDiarmid, Colin
    Yolov, Nikola
    JOURNAL OF GRAPH THEORY, 2017, 86 (03) : 277 - 285
  • [10] Collapsible graphs and Hamilton cycles of line graphs
    Li, Xiangwen
    Xiong, Yan
    DISCRETE APPLIED MATHEMATICS, 2015, 194 : 132 - 142