A universal solution to one-dimensional oscillatory integrals

被引:0
|
作者
LI JianBing
机构
关键词
oscillatory integrals; Levin method; Chebyshev differential matrix; ill-conditioned matrix; Truncated singular value decomposition;
D O I
暂无
中图分类号
TN01 [基础理论];
学科分类号
0702 ; 070208 ;
摘要
How to calculate the highly oscillatory integrals is the bottleneck that restraints the research of light wave and electromagnetic wave’s propagation and scattering. Levin method is a classical quadrature method for this type of integrals. Unfortunately it is susceptible to the system of linear equations’ ill-conditioned behavior. We bring forward a universal quadrature method in this paper,which adopts Chebyshev differ-ential matrix to solve the ordinary differential equation (ODE). This method can not only obtain the indefinite integral’ function values directly,but also make the system of linear equations well-conditioned for general oscillatory integrals. Furthermore,even if the system of linear equations in our method is ill-conditioned,TSVD method can be adopted to solve them properly and eventually obtain accurate integral re-sults,thus making a breakthrough in Levin method’s susceptivity to the system of linear equations’ill-conditioned behavior.
引用
收藏
页码:1614 / 1622
页数:9
相关论文
共 50 条
  • [1] A universal solution to one-dimensional oscillatory integrals
    JianBing Li
    XueSong Wang
    Tao Wang
    Science in China Series F: Information Sciences, 2008, 51 : 1614 - 1622
  • [2] A universal solution to one-dimensional oscillatory integrals
    Li JianBing
    Wang XueSong
    Wang Tao
    SCIENCE IN CHINA SERIES F-INFORMATION SCIENCES, 2008, 51 (10): : 1614 - 1622
  • [3] ESTIMATES OF ONE-DIMENSIONAL OSCILLATORY INTEGRALS
    MULLER, D
    ANNALES DE L INSTITUT FOURIER, 1983, 33 (04) : 189 - 201
  • [4] WAVE-EQUATIONS WITH MEMORY AND ONE-DIMENSIONAL OSCILLATORY INTEGRALS
    LOKSHIN, AA
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1979, (02): : 93 - 96
  • [5] Numerical evaluation of one-dimensional diffraction integrals
    Whitteker, JH
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1997, 45 (06) : 1058 - 1061
  • [6] METHOD FOR EVALUATING ONE-DIMENSIONAL PATH INTEGRALS
    NAUENBERG, M
    KUTTNER, F
    FURMAN, M
    PHYSICAL REVIEW A, 1976, 13 (03): : 1185 - 1189
  • [7] Asymptotics of Feynman Integrals in One-Dimensional Case
    Semenova, T. Yu
    MOSCOW UNIVERSITY MATHEMATICS BULLETIN, 2019, 74 (04) : 163 - 166
  • [8] UNIFORM ESTIMATES OF ONE-DIMENSIONAL OSCILLATING INTEGRALS
    SAMOILENKO, AM
    PETRISHIN, RI
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1987, (11): : 12 - 15
  • [9] Asymptotics of Feynman Integrals in One-Dimensional Case
    T. Yu. Semenova
    Moscow University Mathematics Bulletin, 2019, 74 : 163 - 166
  • [10] Numerical evaluation of one-dimensional diffraction integrals
    Communications Research Cent, Ottawa, Canada
    IEEE Trans Antennas Propag, 6 (1058-1061):