Homoclinic orbits for a perturbed quintic-cubic nonlinear Schrdinger equation

被引:0
|
作者
Boling GUO and Hanlin CHEN Institute of Applied Physics and Computational Mathematics
Mianyang Normal College
机构
关键词
perturbation; homoclinic orbits; invariant manifold; persistence;
D O I
暂无
中图分类号
O175.29 [非线性偏微分方程];
学科分类号
摘要
The existence of homoclinic orbits for a perturbed cubic-quintic nonlinear Schr?dinger equation with even periodic boundary conditions under the generalized parameters conditions is established. We combined geometric singular perturbation theory, Melnikov analysis, and integrable theory to prove the persistence of homocliuic orbits.
引用
收藏
页码:227 / 230
页数:4
相关论文
共 50 条
  • [21] Dynamics of superregular breathers in the quintic nonlinear Schrödinger equation
    Lei Wang
    Chong Liu
    Xuan Wu
    Xin Wang
    Wen-Rong Sun
    Nonlinear Dynamics, 2018, 94 : 977 - 989
  • [22] Analytical soliton solutions for the (2 + 1)-perturbed and higher order cubic–quintic nonlinear Schrödinger equations
    Rafiq Ahmad
    Ahmad Javid
    Optical and Quantum Electronics, 2023, 55
  • [23] Bright soliton dynamics for resonant nonlinear Schrödinger equation with generalized cubic-quintic nonlinearity
    Bao, Keyu
    Tang, Xiaogang
    Wang, Ying
    CHINESE PHYSICS B, 2024, 33 (12)
  • [24] Study of Exact Solutions to Cubic-Quintic Nonlinear Schrdinger Equation in Optical Soliton Communication
    刘彬
    阮航宇
    Communications in Theoretical Physics, 2012, 57 (05) : 731 - 736
  • [25] Equivalence transformations and differential invariants of a generalized cubic–quintic nonlinear Schrödinger equation with variable coefficients
    Ruijuan Li
    Xuelin Yong
    Yuning Chen
    Yehui Huang
    Nonlinear Dynamics, 2020, 102 : 339 - 348
  • [26] Concentration of coupled cubic nonlinear Schrödinger equation
    Xiao-guang Li
    Jian Zhang
    Applied Mathematics and Mechanics, 2005, 26 : 1357 - 1362
  • [27] Localized waves of the coupled cubic–quintic nonlinear Schrdinger equations in nonlinear optics
    徐涛
    陈勇
    林机
    Chinese Physics B, 2017, 26 (12) : 84 - 97
  • [28] Exact solutions for the quintic nonlinear Schrödinger equation with time and space
    Si-Liu Xu
    Nikola Petrović
    Milivoj R. Belić
    Wenwu Deng
    Nonlinear Dynamics, 2016, 84 : 251 - 259
  • [29] BIFURCATIONS OF PERIODIC ORBITS IN THE GENERALISED NONLINEAR SCHRÓDINGER EQUATION
    Bandara, Ravindra I.
    Giraldo, Andrus
    Broderick, Neil G. R.
    Krauskopf, Bernd
    JOURNAL OF COMPUTATIONAL DYNAMICS, 2024,
  • [30] Approximate symmetry reduction for perturbed nonlinear Schrdinger equation
    谢水英
    林机
    Chinese Physics B, 2010, 19 (05) : 5 - 9