EXISTENCE OF NONTRIVIAL SOLUTIONS FOR GENERALIZED QUASILINEAR SCHRDINGER EQUATIONS WITH CRITICAL OR SUPERCRITICAL GROWTHS

被引:0
作者
李全清 [1 ]
吴鲜 [2 ]
机构
[1] Department of Mathematics,Honghe University
[2] Department of Mathematics,Yunnan Normal University
基金
山西省青年科学基金; 中国国家自然科学基金;
关键词
quasilinear Schrdinger equations; critical or supercritical growths; variational methods;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
In this paper,we study the following generalized quasilinear Schrdinger equations with critical or supercritical growths-div(g~2(u)▽u) + g(u)g′(u)|▽u|~2+ V(x)u = f(x,u) + λ|u|p-2u,x∈R~N,where λ>0,N≥3,g:R → R~+ is a C~1 even function,g(0) = 1,g′(s) ≥ 0 for all s ≥ 0,lim|s|→+∞g(s)/|s|α-1:= β > 0 for some α≥ 1 and(α-1)g(s) > g′(s)s for all s > 0 and p ≥α2*.Under some suitable conditions,we prove that the equation has a nontrivial solution for smallλ > 0 using a change of variables and variational method.
引用
收藏
页码:1870 / 1880
页数:11
相关论文
共 50 条
[41]   Existence and concentration of positive solutions for a Schrödinger logarithmic equation [J].
Claudianor O. Alves ;
Daniel C.  de Morais Filho .
Zeitschrift für angewandte Mathematik und Physik, 2018, 69
[42]   Solutions of a quasilinear Schrödinger-Poisson system with linearly bounded nonlinearities [J].
Li, Anran ;
Wei, Chongqing ;
Zhao, Leiga .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2024, 31 (02)
[43]   A class of Schrödinger elliptic equations involving supercritical exponential growth [J].
Yony Raúl Santaria Leuyacc .
Boundary Value Problems, 2023
[44]   On existence and concentration behavior of positive ground state solutions for a class of fractional Schrödinger–Choquard equations [J].
Zu Gao ;
Xianhua Tang ;
Sitong Chen .
Zeitschrift für angewandte Mathematik und Physik, 2018, 69
[45]   Sign-changing solutions to Schrödinger-Kirchhoff-type equations with critical exponent [J].
Liping Xu ;
Haibo Chen .
Advances in Difference Equations, 2016
[46]   Existence and asymptotic behaviour of solutions for a quasi-linear Schrödinger–Poisson system with a critical nonlinearity [J].
Giovany M. Figueiredo ;
Gaetano Siciliano .
Zeitschrift für angewandte Mathematik und Physik, 2020, 71
[47]   EXISTENCE AND NONEXISTENCE OF NONTRIVIAL SOLUTIONS FOR CHOQUARD TYPE EQUATIONS [J].
Wang, Tao .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
[48]   Multiple solutions of discrete Schrödinger equations with growing potentials [J].
Liqian Jia ;
Guanwei Chen .
Advances in Difference Equations, 2016
[49]   Existence of nontrivial solution for quasilinear equations involving the 1-biharmonic operator [J].
Tao, Huo ;
Li, Lin ;
Yang, Xiao-Qiong .
ASYMPTOTIC ANALYSIS, 2023, 133 (04) :535-553
[50]   The nontrivial solutions for fractional Schrodinger-Poisson equations with magnetic fields and critical or supercritical growth [J].
Liu, Lintao ;
Chen, Haibo .
APPLIED MATHEMATICS LETTERS, 2021, 121 (121)