EXISTENCE OF NONTRIVIAL SOLUTIONS FOR GENERALIZED QUASILINEAR SCHRDINGER EQUATIONS WITH CRITICAL OR SUPERCRITICAL GROWTHS

被引:0
作者
李全清 [1 ]
吴鲜 [2 ]
机构
[1] Department of Mathematics,Honghe University
[2] Department of Mathematics,Yunnan Normal University
基金
山西省青年科学基金; 中国国家自然科学基金;
关键词
quasilinear Schrdinger equations; critical or supercritical growths; variational methods;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
In this paper,we study the following generalized quasilinear Schrdinger equations with critical or supercritical growths-div(g~2(u)▽u) + g(u)g′(u)|▽u|~2+ V(x)u = f(x,u) + λ|u|p-2u,x∈R~N,where λ>0,N≥3,g:R → R~+ is a C~1 even function,g(0) = 1,g′(s) ≥ 0 for all s ≥ 0,lim|s|→+∞g(s)/|s|α-1:= β > 0 for some α≥ 1 and(α-1)g(s) > g′(s)s for all s > 0 and p ≥α2*.Under some suitable conditions,we prove that the equation has a nontrivial solution for smallλ > 0 using a change of variables and variational method.
引用
收藏
页码:1870 / 1880
页数:11
相关论文
共 50 条